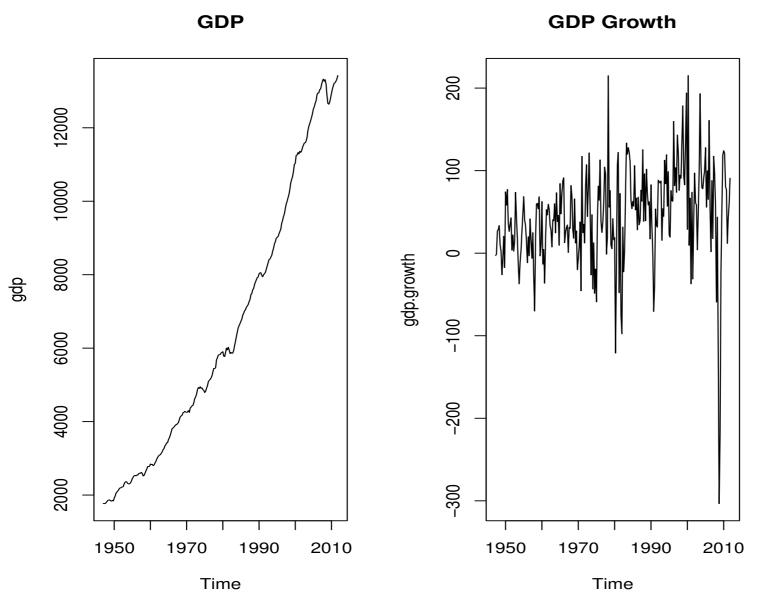
Lecture 2: Basic Time Series Modeling

(Jing Li, Miami University)

Big Picture

- 1. A key issue in time series analysis is stationarity
- 2. A <u>time series plot</u> or <u>unit root test</u> can indicate whether a time series is stationary or nonstationary
- 3. A time series is nonstationary (having unit roots) if it is (1) trending; (2) smooth; (3) showing breaks/structural changes
- 4. A time series is stationary if it is (1) mean-reverting (no trend); (2) choppy; (3) showing no breaks
- 5. Usually after taking difference, a nonstationary time series becomes stationary

Time Series Plot



GDP

- 1. US real GDP is nonstationary since it has an upward trend and smooth
- 2. Because it is not mean-reverting, the average of GDP is irrelevant or meaningless
- 3. Many results in statistics become <u>invalid</u> for GDP such as $var(\bar{y}) = \frac{\sigma^2}{n}$ and law of large number $\bar{y} \to^p E(y)$ as $t \to \infty$

Modeling GDP

- 1. Given the trend shown by GDP, we may try
 - (a) linear trend model $y = \beta t + u$
 - (b) log linear trend model $log(y) = \beta t + u$
 - (c) quadratic trend model $y = \beta t + \alpha t^2 + u$
- 2. Given the smoothness, we may try trigonometric model $y = \beta \sin(kt) + \alpha \cos(kt) + u$
- 3. We may add <u>lagged values</u> to account for persistence, for example, $y_t = \beta t + \alpha t^2 + \gamma y_{t-1} + u$
- 4. We hope the model is <u>adequate</u> so that no information is left in the error term u. In other words we hope error term is as unpredictable as <u>white noise</u>.

Modeling GDP Growth

- 1. We obtain GDP growth after taking (log) difference of GDP
- 2. GDP growth is stationary since it is not trending and chopy
- 3. We can apply ARMA model to GDP growth