
Classification, Tree, and Random Forest

(Jing Li, Miami University)

1. This note introduces classification that predicts a binary dependent variable. Examples

are predicting whether an email is a spam, whether a viewer is interested in a video,

and whether a person votes for Trump.

2. We use wage data1, and the focus is on the binary variable married, which equals one

for a married person, and zero for an unmarried person. The predictors or features

include wage (wa), education (ed), female (fe), and others.

> da = read.csv("wagedata.csv")

> head(da)

wage educ exper female married numdep tenure

1 3.1 11 2 1 0 2 0

2 3.2 12 22 1 1 3 2

3 3.0 11 2 0 0 2 0

4 6.0 8 44 0 1 0 28

5 5.3 12 7 0 1 1 2

6 8.8 16 9 0 1 0 8

> names(da) = c("wa","ed","ex","fe","ma","nu","te")

> str(da)

’data.frame’: 526 obs. of 7 variables:

$ wa: num 3.1 3.2 3 6 5.3 8.8 11 5 3.6 18 ...

$ ed: int 11 12 11 8 12 16 18 12 12 17 ...

$ ex: int 2 22 2 44 7 9 15 5 26 22 ...

$ fe: int 1 1 0 0 0 0 0 1 1 0 ...

$ ma: int 0 1 0 1 1 1 0 0 0 1 ...

$ nu: int 2 3 2 0 1 0 0 0 2 0 ...

$ te: int 0 2 0 28 2 8 7 3 4 21 ...

There are 526 observations, and seven variables. We rename each variable using the

first two letters.

3. An important fact about dummy variable is that its mean value is the same as pro-

portion of that variable being equal to one. That is, let D be a dummy variable, we

1https : //fsb.miamioh.edu/lij14/411 wage.xls

1

have

E(D) = P (D = 1) (1)

To see this,

> table(da$ma)

0 1

206 320

> prop.table(table(da$ma))

0 1

0.391635 0.608365

> mean(da$ma)

[1] 0.608365

In wage data 320 persons are married, and 206 are unmarried. The proportion of

married persons is 0.608365, the same as the mean value 0.608365. Later we will just

use the R mean function to compute proportion for dummy variables.

4. We first consider the predictor female (fe), which is a dummy variable itself—equaling

one for female, and zero for male.

> table(da$fe)

0 1

274 252

> table(dafe,dama)

0 1

0 86 188

1 120 132

> prop.table(table(dafe,dama),margin=1)

0 1

0 0.3138686 0.6861314

1 0.4761905 0.5238095

There are 274 males, and 252 females. Among the 274 males, 86 are unmarried, and 188

are married. The proportion of married males is 0.6861314. The proportion of married

females is 0.5238095. The two proportions seem different, implying that gender may

matter for likelihood of being married.

2

5. The 2 by 2 table reported by table(dafe,dama) is called two-way table. Based

on the two-way table, we can conduct a chi-squared test for the null hypothesis that

married and female are independent:

> chisq.test(dafe,dama,correct=F)

Pearson’s Chi-squared test

data: da$fe and da$ma

X-squared = 14.517, df = 1, p-value = 0.0001389

The p-value 0.0001389 is less than 0.05, so the null hypothesis is rejected. That can

be seen as the formal evidence that gender matters for marital status since the two

variables are not independent. As a result, gender should be considered as a predictor.

6. The relationship between female and married can be quantified by a linear probability

model (LPM):

> summary(lm(da$ma~da$fe))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.6861314 0.02913383 23.551019 3.433689e-84

da$fe -0.1623219 0.04209109 -3.856442 1.293623e-04

The intercept 0.6861314 is E(married|female = 0), the proportion of married males.

The slope -0.1623219 is E(married|female = 1)−E(married|female = 0) = 0.5238095−
0.6861314, the difference between the proportion of married females and the proportion

of married males. The t value -3.856442 implies that the difference is statistically signif-

icant (gender matters!), consistent with the chi-squared test. Note that the proportion

of married females can be inferred from the LPM as 0.6861314−0.1623219 = 0.5238095.

3

Tree Model with Binary Predictor

7. Alternatively, we can consider a decision tree, which splits the sample (root) into two

subsamples (branches). First, we need to install two packages.

> install.packages("rpart")

> install.packages("rpart.plot")

> library(rpart)

> library(rpart.plot)

The tree is built by the rpart function

> tree1=rpart(da$ma~da$fe,method="anova",control=rpart.control(maxdepth=1))

> tree1

n= 526

node), split, n, deviance, yval

* denotes terminal node

1) root 526 125.32320 0.6083650

2) da$fe>=0.5 252 62.85714 0.5238095 *

3) da$fe< 0.5 274 59.00730 0.6861314 *

> prp(tree1)

where the prp function draws tree1 as

da$fe = 1

0.52 0.69

yes no

4

(a) At node 1 (root, whole sample), there are 526 observations. The unconditional

deviance (total sum square) of married is 125.32320, and unconditional mean of

married is 0.6083650, see codes below

> length(da$ma)

[1] 526

> sum((da$ma-mean(da$ma))^2)

[1] 125.3232

> mean(da$ma)

[1] 0.608365

(b) At node 2 (left branch, sub-sample 1), when female is greater than or equal to

0.5 (or female equals one), there are 252 observations. The conditional deviance

is 62.85714, and conditional mean is 0.5238095, see codes below

> length(da$ma[da$fe==1])

[1] 252

> sum((da$ma[da$fe==1]-mean(da$ma[da$fe==1]))^2)

[1] 62.85714

> mean(da$ma[da$fe==1])

[1] 0.5238095

(c) Codes below explain the numbers at node 3 (right branch, sub-sample 2)

> length(da$ma[da$fe==0])

[1] 274

> sum((da$ma[da$fe==0]-mean(da$ma[da$fe==0]))^2)

[1] 59.0073

> mean(da$ma[da$fe==0])

[1] 0.6861314

(d) Now we can predict probability of being married for each person in the sample.

The first six predicted probabilities are

> head(predict(tree1,da))

1 2 3 4 5 6

0.5238095 0.5238095 0.6861314 0.6861314 0.6861314 0.6861314

> head(da$fe)

[1] 1 1 0 0 0 0

5

Basically, depending on whether female is 1 (greater than or equal to 0.5) or 0

(less than 0.5), the tree model uses the conditional mean 0.5238095 or 0.6861314,

which is also conditional proportion, as predicted probabilities. Then we can

classify married as one if the probability is greater than 0.5

> yhat_tree1 = ifelse(predict(tree1,da)>0.5,1,0)

> head(yhat_tree1)

1 1 1 1 1 1

> head(da$ma)

[1] 0 1 0 1 1 1

Compared to the actual value of married, we see that the first and third persons

are mis-classified.

(e) It is clear that this way of classification is not informative at all—since both con-

ditional means 0.5238095 and 0.6861314 are greater than 0.5, we always predict

that a person be married. This undesirable situation suggests that we may com-

pare 0.5238095 and 0.6861314 to the unconditional mean 0.6083650 other than

0.5

> yhat_tree1_new = ifelse(predict(tree1,da)>mean(da$ma),1,0)

> head(yhat_tree1_new)

0 0 1 1 1 1

> head(da$ma)

[1] 0 1 0 1 1 1

Now the classification varies across persons, but second and third persons are

mis-classified

8. Notice that the key results of the tree model, the two conditional means, can be

obtained from LPM as well. Thus, for a binary predictor (or categorical feature with

only two levels), LPM and tree model deliver the same results. There is no advantage

of trying the tree model if the predictor is dummy variable.

6

Categorical Predictor with More Than Two Levels

9. The benefit of tree model can be noticeable for a categorical predictor with more than

two levels. For instance, the variable nu has seven levels.

> table(da$nu)

0 1 2 3 4 5 6

252 105 99 45 16 7 2

The results of LPM that predicts married with nu are

> summary(lm(da$ma~factor(da$nu)))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.51190476 0.03017793 16.9628873 1.135401e-51

factor(da$nu)1 0.14523810 0.05564535 2.6100672 9.313929e-03

factor(da$nu)2 0.21536797 0.05682316 3.7901444 1.682265e-04

factor(da$nu)3 0.28809524 0.07752850 3.7159916 2.243858e-04

factor(da$nu)4 0.05059524 0.12350849 0.4096499 6.822318e-01

factor(da$nu)5 -0.08333333 0.18356516 -0.4539714 6.500392e-01

factor(da$nu)6 0.48809524 0.34008796 1.4352029 1.518316e-01

(a) The rule is that we should use a categorical predictor as factor. The reference level

is 0 (for which the dummy variable is excluded to avoid dummy variable trap),

and the intercept 0.51190476 is the conditional mean of married for that level

> mean(da$ma[da$nu==0])

[1] 0.5119048

(b) Other coefficients are differences between that level and the reference level. For in-

stance, the coefficient of the dummy variable for level 1 (labeled as factor(da$nu)1)

is

> mean(da$ma[da$nu==1])-mean(da$ma[da$nu==0])

[1] 0.1452381

(c) Since there are only seven and two observations for levels 5 and 6, the LPM may

suffer overfitting issue by capturing noise other than signal.

(d) The t values of 0.4096499 and -0.4539714 for levels 4 and 5 indicate that there

are no differences between those two levels and level 0

7

10. Amazingly, the tree model is able to take into account the fact that levels of 0, 4, and

5 might be considered as just one category (since they are not different in terms of

effect on married):

> tree1nb=rpart(da$ma~factor(da$nu),method="anova")

> tree1nb

1) root 526 125.32320 0.6083650

2) factor(da$nu)=0,4,5 275 68.70545 0.5127273 *

3) factor(da$nu)=1,2,3,6 251 51.34661 0.7131474 *

Codes below explain the numbers on node 2

> length(da$ma[da$nu%in%c(0,4,5)])

[1] 275

> sum((da$ma[da$nu%in%c(0,4,5)]-mean(da$ma[da$nu%in%c(0,4,5)]))^2)

[1] 68.70545

> mean(da$ma[da$nu%in%c(0,4,5)])

[1] 0.5127273

The tree looks like

factor(d = 0,4,5

0.51 0.71

yes no

(a) To predict married, we use the left branch when nu equals 0, 4, 5. The conditional

mean is 0.5127273.

(b) We use the right branch when nu equals 1, 2, 3, 6. The conditional mean is

0.7131474

8

(c) This tree model does not suffer the over-fitting issue since levels 5 and 6 (noises)

are not used to create extra individual branches.

(d) We can compare this tree to tree1, which uses female as the predictor

> tree1

1) root 526 125.32320 0.6083650

2) da$fe>=0.5 252 62.85714 0.5238095 *

3) da$fe< 0.5 274 59.00730 0.6861314 *

> as.logical(68.70545+51.34661<62.85714+59.00730)

[1] TRUE

Recall that deviance measures prediction error. Based on deviance, the left branch

using nu = 0, 4, 5 produces worse classification than the left branch using fe=1 (be-

cause 68.70545>62.85714); whereas the right branch using nu=1,2,3,6 produces

better classification than the right branch using fe=0 (because 51.34661<59.00730).

Overall, nu has greater predictive power than female (because 68.70545+51.34661 <

62.85714 + 59.00730)

11. Next we include both female and nu in the tree model

> tree1nc=rpart(da$ma~factor(da$nu)+da$fe,method="anova")

> tree1nc

1) root 526 125.32320 0.6083650

2) factor(da$nu)=0,4,5 275 68.70545 0.5127273 *

3) factor(da$nu)=1,2,3,6 251 51.34661 0.7131474

6) da$fe>=0.5 130 31.56923 0.5846154 *

7) da$fe< 0.5 121 15.32231 0.8512397 *

The tree looks like

9

factor(d = 0,4,5

da$fe = 10.51

0.58 0.85

yes no

(Exercise): describe how to predict married using this tree.

Tree Model with Continuous Predictor

12. The benefit of tree model can be even more remarkable when (i) the predictor is

continuous and when (ii) nonlinearity or interaction is present.

13. For instance, the variable wage (wa) is numeric and continuous. The LPM that uses

wa without and with its squared term are

> summary(lm(da$ma~da$wa))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.43097866 0.039079601 11.028226 1.417692e-25

da$wa 0.03001973 0.005602991 5.357805 1.263821e-07

> da$wasq = da$wa^2

> summary(lm(da$ma~da$wa+da$wasq))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.260430529 0.0691113088 3.768277 1.830830e-04

da$wa 0.080451514 0.0178050023 4.518478 7.707304e-06

da$wasq -0.002619927 0.0008786916 -2.981623 3.000848e-03

The negative coefficient -0.002619927 of the squared term implies a parabola fac-

ing downward—as wage rises, the chance of being married first rises, and beyond a

10

turning point, starts to fall. Its t value -2.981623 implies that (i) the squared term is

statistically significant and (ii) nonlinearity is present.

14. The regression model is parametric in the sense that it imposes a specific function

form, a quadratic function in this case, for the conditional mean. By contrast, the

tree model is non-parametric without assuming a specific function form. In fact, the

tree model is based on step function, which can approximate any function in a short

window (bandwidth). For example, consider the simplest tree that uses wa as predictor

> tree2=rpart(da$ma~da$wa,method="anova",control=rpart.control(maxdepth=1))

> tree2

1) root 526 125.32320 0.6083650

2) da$wa< 3.75 176 43.03977 0.4261364 *

3) da$wa>=3.75 350 73.50000 0.7000000 *

The key message from tree2 is that people with wage greater than 3.75 has higher

chance of being married (conditional mean is 0.7000000) than people with wage less

than 3.75 (conditional mean is 0.4261364)

15. The data-driven cutoff value 3.75 is a crucial intermediate output that is obtained

through a grid search that minimizes the residual sum squares

> summary(da$wa)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.530 3.300 4.700 5.909 6.900 25.000

> ir = seq(3.3,6.9,0.1)

> v.cut = rep(NA,length(ir))

> v.rss = rep(NA,length(ir))

> j = 1

> for (i in ir) {

+ v.cut[j] = i

+ x = factor(da$wa>=i)

+ uhat = resid(lm(da$ma~x))

+ v.rss[j] = sum(uhat^2)

+ j = j+1

+ }

11

> ocut = v.cut[which(v.rss==min(v.rss))]

> cat("optimal cut is",ocut,"\n")

optimal cut is 3.8

> length(da$ma[da$wa<ocut])

[1] 176

> sum((da$ma[da$wa<ocut]-mean(da$ma[da$wa<ocut]))^2)

[1] 43.03977

> mean(da$ma[da$wa<ocut])

[1] 0.4261364

Basically, we treat each value between the first and third quartiles of wage as a po-

tential cutoff. Then we use a R for loop to find the optimal cutoff that produces

the least deviance (residual sum squares). Finally, we use the optimal cutoff to split

the sample into two sub-samples, and create the tree. The grid search plot is below

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

1
1

7
1

1
8

1
1

9
1

2
0

1
2

1
1

2
2

grid search cutoff

cutoff

R
S

S

16. Of course we let the tree grow by setting maxdepth = 2

> tree3=rpart(da$ma~da$wa,method="anova",control=rpart.control(maxdepth=2))

> tree3

1) root 526 125.323200 0.6083650

2) da$wa< 3.75 176 43.039770 0.4261364

12

4) da$wa< 2.85 28 4.107143 0.1785714 *

5) da$wa>=2.85 148 36.891890 0.4729730 *

3) da$wa>=3.75 350 73.500000 0.7000000

6) da$wa< 8.25 248 55.548390 0.6612903 *

7) da$wa>=8.25 102 16.676470 0.7941176 *

> mean(da$ma)

[1] 0.608365

However, tree3 turns out to be no more useful than tree2. Notice that the conditional

means at node 4 and 5 are both less than the unconditional mean 0.608365, while

the conditional means at node 6 and 7 are both greater than 0.608365. This finding

indicates that classification from tree3 is the same as tree2. Or in other words, tree3

is unnecessarily complex, so needs pruning. The tree2 and tree3 look like

da$wa < 3.8

0.43 0.7

yes no

da$wa < 3.8

da$wa < 2.9 da$wa < 8.3

0.18 0.47 0.66 0.79

yes no

Confusion Matrix

17. An important tool to evaluate the performance of classification models is confusion matrix,

a table that displays the counts of true positive, true negative, false positive, and false

negative predictions. For instance, the confusion matrix for LPM without the squared

term of wage is

13

> # confusion matrix

> yhat_reg = ifelse(fitted(lm(da$ma~da$wa))>mean(da$ma),1,0)

> table(da$ma,yhat_reg)

yhat_reg

0 1

0 153 53

1 176 144

The meaning of each number is indicated by following codes

> length(which(da$ma==0&yhat_reg==0))

[1] 153

> length(which(da$ma==1&yhat_reg==0))

[1] 176

> length(which(da$ma==0&yhat_reg==1))

[1] 53

> length(which(da$ma==1&yhat_reg==1))

[1] 144

We see that the model mis-classifies 176 + 53 = 229 persons. After the squared term

is added, the prediction improves

> yhat_sqreg = ifelse(fitted(lm(da$ma~da$wa+da$wasq))>mean(da$ma),1,0)

> table(da$ma,yhat_sqreg)

yhat_sqreg

0 1

0 145 61

1 153 167

Now, the number of mis-classifications becomes 153+61 = 214. Confusion matrix below

show that tree2 and tree3 have the same number of mis-classifications 180. Thus tree3

needs pruning, and tree2 is the best classification model (by having the least sum of

terms not on the diagonal line in the confusion matrix).

> yhat_tree2 = ifelse(predict(tree2)>mean(da$ma),1,0)

> table(da$ma,yhat_tree2)

yhat_tree2

14

0 1

0 101 105

1 75 245

>

> yhat_tree3 = ifelse(predict(tree3)>mean(da$ma),1,0)

> table(da$ma,yhat_tree3)

yhat_tree3

0 1

0 101 105

1 75 245

To sum up, the off-diagonal values of a confusion matrix are crucial for understanding

the errors made by the classification model. When ranking classifications, we look for

the model that produces the least sum of off-diagonal values.

Nonlinearity

18. The main reason why tree2 outperforms LPM with the squared term is that in this

case the nonlinearity does not take the form of a quadratic function. To see this, we

can divide wage into ten intervals, and compute the conditional mean of married for

each interval

> intervals = cut(da$wa, breaks = 10)

> tapply(da$ma, intervals, mean)

(0.506,2.98] (2.98,5.42] (5.42,7.87] (7.87,10.3] (10.3,12.8] (12.8,15.2] (15.2,17.7]

0.2931034 0.5725806 0.7009346 0.7580645 0.5882353 0.8421053 1.0000000

(17.7,20.1] (20.1,22.6] (22.6,25]

0.8888889 0.6666667 1.0000000

The graph below plots the conditional mean in each interval, and it is clear that the

pattern is highly nonlinear, and does not look like a parabola.

15

2 4 6 8 10

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

interval

c
o
n
d
it
io

n
a
l
m

e
a
n

Tree vs Regression

19. A tree model may outperform a regression model in several scenarios:

(a) If the relationship between predictors and the dependent variable is highly nonlinear,

a decision tree may outperform a regression model, which typically assumes a spe-

cific function form such as linear and quadratic.

(b) Decision trees can handle interactions between predictors more effectively than a

regression model.

(c) If the data contains outliers that significantly affect the regression model’s per-

formance, a decision tree may provide better results.

(d) If the data contains a mix of numerical and categorical predictors, a decision tree

may outperform a regression model.

Random Forest

20. Tree model has the limitation that it does not provide standard error, which measures

the sampling uncertainty. Moreover, the tree model can suffer big variance—after the

sample changes, the results from tree model can vary a lot. For instance, the graph

below compares tree2 to tree2n that only uses the first 100 observations of wage data.

16

tree2=rpart(da$ma~da$wa,method="anova",control=rpart.control(maxdepth=1))

sda = da[1:100,]

tree2n=rpart(sda$ma~sda$wa,method="anova",control=rpart.control(maxdepth=1))

par(mfrow=c(1,2))

prp(tree2)

prp(tree2n)

da$wa < 3.8

0.43 0.7

yes no sda$wa < 13

0.48 0.91

yes no

We see the cutoff changes from 3.8 to 13. The conditional means change accordingly.

21. Random Forest aims to improve the tree model in at least two ways. First, it accounts

for the sampling uncertainty by (i) resampling data repeatedly (called bootstrap), (ii)

creating multiple trees (forest) based on those resampled data; and (iii) averaging the

predicted probabilities obtained from the multiple trees.

22. Bootstrap entails resampling the index of data with replacement. For instance, con-

sider the first five observations. One resampled data look like

> da[1:5,]

wa ed ex fe ma nu te

1 3.1 11 2 1 0 2 0

2 3.2 12 22 1 1 3 2

3 3.0 11 2 0 0 2 0

4 6.0 8 44 0 1 0 28

5 5.3 12 7 0 1 1 2

> index = sample(1:5,5,replace=T)

17

> index

[1] 1 4 4 5 2

> da[index,]

wa ed ex fe ma nu te

1 3.1 11 2 1 0 2 0

4 6.0 8 44 0 1 0 28

4.1 6.0 8 44 0 1 0 28

5 5.3 12 7 0 1 1 2

2 3.2 12 22 1 1 3 2

In this case, the 4th observations appear twice in the bootstrap data, whereas the third

observation is absent. Loosely speaking, resampling data is like reshuffling a deck of

cards. It enables us to re-use the original data repeatedly. By doing so, we can account

for the sampling variability.

23. There is a technical issue. We want to ensure that the bootstrap data preserve the

unconditional mean of married. That is, we hope to maintain the ratio of married

vs unmarried persons. Thus, conventional bootstrap does not work here, and we need

stratified bootstrap that resamples data within married and unmarried persons. Codes

below illustrates the stratified bootstrap

> # stratified bootstrap

> da_one = da[da$ma==1,]

> n_one = nrow(da_one)

> da_zero = da[da$ma==0,]

> n_zero = nrow(da_zero)

>

> inde_one = sample(seq(1,n_one),n_one,replace=T)

> inde_zero = sample(seq(1,n_zero),n_zero,replace=T)

> da_boot = rbind(da_one[inde_one,],da_zero[inde_zero,])

> mean(da_boot$ma)

[1] 0.608365

> mean(da$ma)

[1] 0.608365

18

24. An an illustration, next we bootstrap data four times, and create four trees (a mini

forest)

da_boot$ < 3

0.25 0.66

yes no da_boot$ < 3.8

0.41 0.7

yes no

da_boot$ < 3.8

0.38 0.72

yes no da_boot$ < 3.2

0.28 0.69

yes no

(Exercise): can you explain why the second and third trees have different conditional

means despite that they have the same cutoff values.

25. For instance, suppose a person has wage 4. The average predicted probability of being

married for this person is

0.6580087 + 0.7042254 + 0.7223796 + 0.6863208

4
= 0.6580087 (2)

where we get the numbers in the numerator from the appropriate branch in each

individual tree (this person is on the right branch for all four trees). Because 0.6580087

exceeds the unconditional mean 0.608365, this person is classified as being married.

The codes to obtain that mini forest is below

> forest = list()

> for (i in 1:4) {

+ inde_one = sample(seq(1,n_one),n_one,replace=T)

+ inde_zero = sample(seq(1,n_zero),n_zero,replace=T)

+ da_boot = rbind(da_one[inde_one,],da_zero[inde_zero,])

+ tree2b=rpart(da_boot$ma~da_boot$wa,method="anova",control=rpart.control(maxdepth=1))

+ forest[[i]]=tree2b

+ }

The details of the first tree are below

19

> forest[[1]]

n= 526

1) root 526 125.3232 0.6083650

2) da_boot$wa< 2.95 64 12.0000 0.2500000 *

3) da_boot$wa>=2.95 462 103.9654 0.6580087 *

The codes to obtain the predict probability of being married from each tree are

> for (i in 1:4) {

+ cat("predicted probability of being married from tree ", i, "is","\n")

+ print(predict(forest[[i]],newdata)[nrow(da)])

+ }

predicted probability of being married from tree 1 is

526

0.6580087

predicted probability of being married from tree 2 is

526

0.7042254

predicted probability of being married from tree 3 is

526

0.7223796

predicted probability of being married from tree 4 is

526

0.6863208

> mean(0.6580087,0.7042254,0.7223796,0.6863208)

[1] 0.6580087

26. The second way by which random forest improves the tree model is that a random subset

of predictors is used to create individual tree. For instance, tree1 may use wa and te

as predictors; tree2 may use ed and te, see codes below. By choosing a random set of

predictors, random forest is able to (i) mitigate the issue of collinearity and outlier,

and (ii) reduce the variance of average forecast.

20

> p.set = c("wa","ed","ex","fe","nu","te")

> set.seed(1234)

> forest = list()

> for (i in 1:4) {

+ inde_one = sample(seq(1,n_one),n_one,replace=T)

+ inde_zero = sample(seq(1,n_zero),n_zero,replace=T)

+ da_boot = rbind(da_one[inde_one,],da_zero[inde_zero,])

+ x = sample(p.set,2,replace=F)

+ cat("*****************","","\n")

+ cat("predictors in tree",i, "are ",x,"\n")

+ tree2b=rpart(da_boot$ma~da_boot[[x[1]]]+da_boot[[x[2]]],method="anova",control=rpart.control(maxdepth=2))

+ forest[[i]]=tree2b

+ }

predictors in tree 1 are wa te

predictors in tree 2 are ed te

predictors in tree 3 are fe ex

predictors in tree 4 are nu fe

Pay attention to these two lines in particular

x = sample(p.set,2,replace=F)

rpart(da_boot$ma~da_boot[[x[1]]]+da_boot[[x[2]]],method="anova",control=rpart.control(maxdepth=2))

The new random forest with randomly chosen predictors looks like

21

da_boot[[x[2 = 0

da_boot[[x[1 < 3 da_boot[[x[1 < 3

0.08 0.49 0.38 0.81

yes no
da_boot[[x[2 = 0

da_boot[[x[1 < 12 da_boot[[x[1 >= 18

0.28 0.5 0.33 0.79

yes no

da_boot[[x[2 = 0

da_boot[[x[2 = 0 da_boot[[x[1 >= 1

0.04 0.32 0.6 0.78

yes no
da_boot[[x[1 < 1

da_boot[[x[2 = 10.49

0.55 0.89

yes no

27. In practice, we just use the built-in randomForest function. For instance, below we use

the last observation (the 526th) of wage data as testing set, and all other observations

as training set. The random forest consists of 100 tree. The 526th observation is

classified as 1.

> install.packages("randomForest")

> library(randomForest)

> set.seed(12345)

> fit = randomForest(factor(ma)~wa+ed+fe+nu, da[-526,],ntree=100)

> predict(fit, da[526,])

526

1

Levels: 0 1

to learn more about this function

> ? randomForest

28. Random forest can also be applied to numeric dependent variable. Then it is called

regression tree as opposed to decision tree. For instance, we can build a random forest

to predict wage of a married male with 10 year education. Below are codes and results

> set.seed(12345)

> fit = randomForest(wa~ed+fe+ma, da, ntree=100)

> predict(fit, data.frame(ed=10,fe=0,ma=1))

22

1

6.198521

The predicted wage is 6.198521. This prediction makes sense—it is less than 8, the

average wage of married male, since his education is below 12.89894, the average edu-

cation in that group .

> mean(da$wa[da$ma==1&da$fe==0])

[1] 8

> mean(da$ed[da$ma==1&da$fe==0])

[1] 12.89894

29. We can compare the sum of squared forecasting error (SSFE) between OLS regres-

sion and random forest. First, we use ed, ma and fe to predict wa. We consider

out-of-sample forecast by excluding the unit we want to predict (in a fashion called

rolling window)

> set.seed(12345)

> yhat_ols = rep(NA,nrow(da))

> yhat_rf = rep(NA,nrow(da))

> for (i in 1:nrow(da)) {

+ m_ols = lm(wa~ed+fe+ma,da[-i,])

+ yhat_ols[i]=predict(m_ols,da[i,])

+ m_rf = randomForest(wa~ed+fe+ma,da[-i,],ntree=100)

+ yhat_rf[i]=predict(m_rf,da[i,])

+ }

> sum((da$wa-yhat_ols)^2)

[1] 5267.823

> sum((da$wa-yhat_rf)^2)

[1] 5229.609

We see random forest outperforms because its SSFE 5229.609 is less than that of OLS

regression 5267.823. Next we add ex and nu as predictors

> set.seed(12345)

> yhat_ols = rep(NA,nrow(da))

23

> yhat_rf = rep(NA,nrow(da))

> for (i in 1:nrow(da)) {

+ m_ols = lm(wa~ed+fe+ma+nu+ex,da[-i,])

+ yhat_ols[i]=predict(m_ols,da[i,])

+ m_rf = randomForest(wa~ed+fe+ma+nu+ex,da[-i,],ntree=100)

+ yhat_rf[i]=predict(m_rf,da[i,])

+ }

> sum((da$wa-yhat_ols)^2)

[1] 5035.794

> sum((da$wa-yhat_rf)^2)

[1] 4819.696

Now the superiority of random forest becomes more noticeable.

30. There may be multiple reasons why random forest performs better in this case. One

reason is that the OLS regression above fails to account for nonlinearity and interaction.

For instance, the new OLS regression below indicates that squared term of ex and

interaction term of fe and ma should be considered.

> summary(lm(wa~ed+fe+ma+nu+ex+I(ex^2)+ma:fe,da))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.028419978 0.7869217089 -3.8484387 1.337176e-04

ed 0.541728908 0.0526964669 10.2801751 1.101491e-22

fe -0.460346306 0.4191129321 -1.0983825 2.725478e-01

ma 1.603832228 0.4195183507 3.8230324 1.478565e-04

nu -0.072210971 0.1135418483 -0.6359855 5.250668e-01

ex 0.246270825 0.0381624698 6.4532203 2.518490e-10

I(ex^2) -0.004360541 0.0008369092 -5.2102923 2.726578e-07

fe:ma -2.687261585 0.5377102104 -4.9976019 7.953261e-07

Nevertheless, even this new regression may ignore other possible nonlinearity and in-

teraction. Also, this new regression has the drawback that it treats nu as numeric other

than categorical. By contrast, the random forest automatically takes into account of

mix of numeric and categorical variables, and possible nonlinearity and interaction.

31. In general, the benefit of random forest grows as the number of predictors rises (issues

such as mixed type, nonlinearity, interaction, and collinearity rise).

24

