Transformed Regression, Prediction Interval, and T test

 (Jing Li, Miami University)1. This note discusses how to obtain prediction interval (or interval forecast) and run T test with the technique of transformed regression.
2. Consider House data, and we want to predict the average price for a house with two bathrooms. The R codes and results of regressing price onto baths are below
```
> ad = "https://www.fsb.miamioh.edu/lij14/400_house.txt"
> da = read.table(url(ad), header=T)
> m = lm(rprice~ baths,data=da)
> summary(m)$coef
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 14510.80 4299.715 3.374829 8.297909e-04
baths 29582.67 1745.859 16.944481 2.225878e-46
```

3. The general formula for prediction is

$$
\begin{equation*}
\hat{y} \equiv \hat{E}(y \mid x=c)=\hat{\beta}_{0}+\hat{\beta}_{1} c \tag{1}
\end{equation*}
$$

For this example, the predicted average price when baths equal two is 73676.15 :

```
> # predict E(y|x=c)
> c = 2
> yhat = summary(m)$coef[1,1]+summary (m)$coef [2,1]*c
> yhat
```

[1] 73676.15

The R built-in function predict can be applied here:
> newda = data.frame(baths=c)
> predict(m,newdata=newda)
73676.15
4. It is harder to obtain a prediction interval that looks like

$$
\begin{equation*}
\hat{y} \pm \text { criticalvalue } * \text { se } \tag{2}
\end{equation*}
$$

The challenge is finding the standard error (se), the square root of variance of \hat{y}. Let us try using math to derive the variance. First, rewrite \hat{y} as

$$
\begin{equation*}
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} c=\left(\bar{y}-\hat{\beta}_{1} \bar{x}\right)+\hat{\beta}_{1} c=\bar{y}+\hat{\beta}_{1}(c-\bar{x}) \tag{3}
\end{equation*}
$$

where we use the OLS formula for the intercept $\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}$. Let $\sigma^{2}=\operatorname{var}(u \mid x)$ be the conditional variance of error term, which is also the conditional variance of y. Then it follows that

$$
\begin{equation*}
\operatorname{var}(\hat{y})=\operatorname{var}(\bar{y})+\operatorname{var}\left(\hat{\beta}_{1}(c-\bar{x})\right)=\sigma^{2}\left(\frac{1}{n}+\frac{(c-\bar{x})^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right) \tag{4}
\end{equation*}
$$

where we use the facts that $\operatorname{var}(\bar{y})=\frac{\sigma^{2}}{n}$ and $\operatorname{var}\left(\hat{\beta}_{1}\right)=\frac{\sigma^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}$. The R codes to obtain the standard error (square root of $\operatorname{var}(\bar{y})$) and prediction intervals are

```
> varyhat = summary(m)$sigma^2*(1/length(da$baths)+(c-mean(da$baths))^2/sum((da$bat
> seyhat = sqrt(varyhat)
> seyhat
```

[1] 1468.147
> yhat-qt $(0.975,319) *$ seyhat
[1] 70787.67
> yhat+qt $(0.975,319) *$ seyhat
[1] 76564.62
where the critical value is from the T distribution with $n-k-1=319$ degree of freedom.
5. In this case, the 95 percent prediction interval of rprice for a house with two bathrooms are ($70787.67,76564.62$)
6. It turns out that there is an equivalent but simpler way to compute the standard error and obtain prediction interval. The key is running a transformed regression.
(a) First, define a new regressor w as the difference between the original regressor and the value used for prediction

$$
w=x-c
$$

Then algebra rearrangement of original regression leads to a transformed regression using w as regressor:

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x+u=\beta_{0}+\beta_{1}(w+c)+u=\left(\beta_{0}+\beta_{1} c\right)+\beta_{1} w+u \tag{5}
\end{equation*}
$$

(b) Notice that the constant term (intercept) $\beta_{0}+\beta_{1} c$ in the transformed regression is the same as yhat. Unsurprisingly, its standard error gives us the se of yhat

```
> da$w = da$baths-c
> m.t = lm(rprice~ w,data=da)
> summary(m.t)$coef
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 73676.15 1468.147 50.18308 1.952704e-153
w 29582.67 1745.859 16.94448 2.225878e-46
```

As expected, the standard error of intercept 1468.147 is what we seek.
(c) Even better, we can use built-in function confint to obtain the confidence interval for the intercept, which is also the prediction interval for yhat
> confint(m.t)
2.5 \% 97.5%
(Intercept) 70787.6776564 .62
w 26147.8233017 .53
(d) Functionpredict provides the same interval
> predict(m,newdata=newda,interval="confidence",level=0.95)
fit lwr upr
173676.1570787 .6776564 .62
(e) We may predict individual price other than average price for a house with two bathrooms

```
> # predict individual y
> yhat-qt(0.975,319)*sqrt(summary(m.t)$coef[1,2]^2+summary(m)$sigma^2)
```

[1] 26243.5
> yhat+qt ($0.975,319$) *sqrt (summary (m.t) \$coef $[1,2]$ ^2+summary (m)\$sigma^2)
[1] 121108.8
> predict(m,newdata=data.frame(baths=c(2)),interval="prediction",level=0.95)
fit lwr upr
173676.1526243 .5121108 .8

In this case, the standard error of individual yhat is

$$
\begin{equation*}
\text { se }(\text { individual } \hat{y})=\sigma \sqrt{\left(1+\frac{1}{n}+\frac{(c-\bar{x})^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right)} \tag{6}
\end{equation*}
$$

7. Now consider how to obtain a transformed regression in order to test the single hypothesis of linear combination of coefficients such as

$$
\begin{equation*}
H_{0}: \beta_{1}+\beta_{2}=c \tag{7}
\end{equation*}
$$

after fitting a multiple regression

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u \tag{8}
\end{equation*}
$$

(a) We can define a new parameter γ as

$$
\begin{equation*}
\gamma=\beta_{1}+\beta_{2}-c \tag{9}
\end{equation*}
$$

Note that under H_{0} we have $\gamma=0$.
(b) Next replace β_{1} with $\gamma-\beta_{2}+c$ in the original regression

$$
\begin{equation*}
y=\beta_{0}+\left(\gamma-\beta_{2}+c\right) x_{1}+\beta_{2} x_{2}+u \tag{10}
\end{equation*}
$$

Simplify. Then we have

$$
\begin{equation*}
y-c x_{1}=\beta_{0}+\gamma x_{1}+\beta_{2}\left(x_{2}-x_{1}\right)+u \tag{11}
\end{equation*}
$$

(c) For the transformed regression, the dependent variable is $y-c x_{1}$, and regressors are x_{1} and $x_{2}-x_{1}$.
(d) Now we need to test the hypothesis

$$
H_{0}: \gamma=0
$$

and the t value is automatically reported by R (for coefficient of x_{1}) after we run the transformed regression.
(e) For example, considering testing $H_{0}: \beta_{1}+\beta_{2}=1$ for the multiple regression that regresses rprice onto age and baths
> da\$newy = da\$rprice-da\$age
> da\$newx1 = da\$age
> da\$newx2 = da\$baths-da\$age
> summary(lm(newy ${ }^{\text {newx1+newx2, data=da) }) \text { (coef }}$
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) 19865.82 $4871.2094 .078215 .741383 \mathrm{e}-05$
newx1 $27965.67 \quad 1872.82314 .932361 .417865 \mathrm{e}-38$
newx2 $28067.13 \quad 1856.69415 .11673 \quad 2.786054 \mathrm{e}-39$
The t test is the t value of newx1, 14.93236.
(f) The squared t value 222.9754 is F test, which be obtained by linearHypothesis function in car package

```
> 14.93236^2
[1] 222.9754
> library(car)
> m = lm(rprice~age+baths,data=da)
> linearHypothesis(m, matrix(c(0, 1, 1), nrow = 1), 1)
Hypothesis: age + baths = 1
Model 1: restricted model
Model 2: rprice ~ age + baths
Res.Df RSS Df Sum of Sq F Pr (>F)
1 319 3.0917e+11
2 318 1.8174e+11 1 1.2743e+11 222.98< 2.2e-16 ***
```

