
Text Analysis, Regular Expression, Data Cleaning

(Jing Li, Miami University)

1. This note provides one example of analyzing text data and another example of data

cleaning with the tool of regular expression. For instance, the webpage below

http://results2.xacte.com/#/e/2459/searchable

contains information about runners in a competition:

We want to conduct a statistical analysis examining how the performance of a runner

(Net, the second to the last column) is related to age, gender, etc. But the web does

not offer a link to download data.

2. To scrape data from the webpage, I just highlight, copy, and paste the records for the

first 21 runners into Excel, and save it as tab delimitated txt file.

3. R can read the txt file with function readLines. The first six observations are

> d = readLines("run.txt")

> head(d)

[1] "30961\tAADITYA RAUT\t\"HAYWARD , CA\"\t40:47:00\t41:44:00"

[2] "\t\"5K, M/34\"\t\t\t"

[3] "1373\tAAINA SHARMA\t\"SAN FRANCISCO , CA\"\t\t"

[4] "\t\"HALF, F/35\"\t\t\t"

1

[5] "4018\tAAKANKSHA MIRDHA\t\"SAN FRANCISCO , CA\"\t\t"

[6] "\t\"HALF, F/29\"\t\t\t"

Note that every runner has two entries (rows) in the data.

4. This data is not ready for R analysis. We need to remove the first troublemaker—

double quotation mark shown in the middle of string.

> d1 = gsub("\"", "", d)

> head(d1)

[1] "30961\tAADITYA RAUT\tHAYWARD , CA\t40:47:00\t41:44:00"

[2] "\t5K, M/34\t\t\t"

[3] "1373\tAAINA SHARMA\tSAN FRANCISCO , CA\t\t"

[4] "\tHALF, F/35\t\t\t"

[5] "4018\tAAKANKSHA MIRDHA\tSAN FRANCISCO , CA\t\t"

[6] "\tHALF, F/29\t\t\t"

where gsub function replaces slash quotation in the middle of string with nothing.

5. Then we replace the second troublemaker—slash t with < b >, which effectively sepa-

rates information as a new delimiter

> d2 = gsub("\t", "", d1)

> head(d2)

[1] "30961AADITYA RAUTHAYWARD , CA40:47:0041:44:00"

[2] "5K, M/34"

[3] "1373AAINA SHARMASAN FRANCISCO , CA"

[4] "HALF, F/35"

[5] "4018AAKANKSHA MIRDHASAN FRANCISCO , CA"

[6] "HALF, F/29"

6. An efficient way to extract (parse) information from text is utilizing regular expression

that describes the search pattern. A good starting point to learn it is checking out

https://bookdown.org/rdpeng/rprogdatascience/regular-expressions.html

https://www.youtube.com/watch?v=NvHjYOilOf8

https://www.youtube.com/watch?v=q8SzNKib5-4

2

7. In this case, the easiest information to extract is whether a runner runs 5K or HALF.

> r = regexpr("5K|HALF",d2)

> group = regmatches(d2,r)

> head(group)

[1] "5K" "HALF" "HALF" "HALF" "HALF" "HALF"

Google or use Chatgpt to learn more about the regexpr and regmatches functions.

They are the key functions handelling regular expression.

8. The pattern for sex is that the value always appears after a comma and space, but in

front of a slash

> r = regexpr(", [M|F]/",d2)

> m = regmatches(d2,r)

> head(m)

[1] ", M/" ", F/" ", F/" ", M/" ", M/" ", M/"

> sex = substr(m,nchar(m)-1,nchar(m)-1)

> head(sex)

[1] "M" "F" "F" "M" "M" "M"

Note that we use function substr to extract part of a string based on the location.

9. The pattern for age is that they are two digits that always appear immediately after

MF slash

> r = regexpr("[M|F]/[0-9][0-9]",d2)

> m = regmatches(d2,r)

> head(m)

[1] "M/34" "F/35" "F/29" "M/25" "M/29" "M/20"

> age = substr(m,nchar(m)-1,nchar(m))

> head(age)

[1] "34" "35" "29" "25" "29" "20"

10. The state are always two uppercase letters that appear after space, comma, and space

3

> r = regexpr(" , [A-Z][A-Z]",d2)

> m = regmatches(d2,r)

> head(m)

[1] " , CA" " , CA" " , CA" " , CA" " , CA" " , CA"

> state = substr(m,nchar(m)-1,nchar(m))

> head(state)

[1] "CA" "CA" "CA" "CA" "CA" "CA"

11. Extracting Net is trickier because they are missing (not available NA) for some runners,

and the length is not fixed. Nevertheless, they show the pattern that two digits followed

by : followed by two digits.

> index = 1:length(d2)

> inde = index[index%%2!=0]

> net = rep(0, length(d2)/2)

> r = regexpr("(.:)?[0-9][0-9]:[0-9][0-9]",d2)

> net = ifelse(r[inde]==-1,NA,net)

> net[!is.na(net)] = regmatches(d2,r)

> head(net)

[1] "40:47" NA NA "2:07:40" "2:42:27" "2:14:39"

12. We may extract name in three steps

> r = regexpr("[0-9]?[0-9][0-9][0-9][0-9][A-Z -]+",d2)

> m = regmatches(d2,r)

> head(m)

[1] "30961AADITYA RAUT" "1373AAINA SHARMA" "4018AAKANKSHA MIRDHA"

[4] "4287AAKASH RAWAL" "2275AALOK SHEWADE" "5729AARADHYA POUDYAL"

> r = regexpr("[A-Z -]+",m)

> m = regmatches(m,r)

> head(m)

[1] "AADITYA RAUT" "AAINA SHARMA" "AAKANKSHA MIRDHA" "AAKASH RAWAL"

[5] "AALOK SHEWADE" "AARADHYA POUDYAL"

> name = gsub("","",m)

> head(name)

[1] "AADITYA RAUT" "AAINA SHARMA" "AAKANKSHA MIRDHA" "AAKASH RAWAL" "AALOK SHEWADE"

4

[6] "AARADHYA POUDYAL"

13. Now we are ready to put all information in a data frame that R can analyze

> da = data.frame(name,age,sex,state,net)

> head(da)

name age sex state net

1 AADITYA RAUT 34 M CA 40:47

2 AAINA SHARMA 35 F CA <NA>

3 AAKANKSHA MIRDHA 29 F CA <NA>

4 AAKASH RAWAL 25 M CA 2:07:40

5 AALOK SHEWADE 29 M CA 2:42:27

6 AARADHYA POUDYAL 20 M CA 2:14:39

14. Statistical analysis now is doable. Just keep in mind that currently all variables are

character. We need to coerce values to a different type if necessary.

> str(da)

’data.frame’: 21 obs. of 5 variables:

$ name : chr "AADITYA RAUT" "AAINA SHARMA" "AAKANKSHA MIRDHA" "AAKASH RAWAL" ...

$ age : chr "34" "35" "29" "25" ...

$ sex : chr "M" "F" "F" "M" ...

$ state: chr "CA" "CA" "CA" "CA" ...

$ net : chr "40:47" NA NA "2:07:40" ...

> mean(as.numeric(da$age))

[1] 36.95238

> table(factor(da$sex))

F M

2 19

15. (Exercise): how to use regular expression to extract the recipients from the email

address. For instance, how to extract “mr.A” and “jingli” from mr.A@ohio.gov and

jingli@miamioh.edu. How to extract “gov” and “edu”?

16. (Exercise) Use regular expression to count how many words end with “ad” in the

sentence “Dad had a bad day, so is sad.”

5

Data Cleaning

1. Now we look at an example of data cleaning. The following webpage

https://en.wikipedia.org/wiki/Member_states_of_the_World_Trade_Organization

has a table:

I copy and paste the table into Excel, and save it as comma separated csv file (because

the original table has spaces in all three columns, so I need comma as delimiter). I use

R function read.csv to read data

> d = read.csv("wto.csv",header=F)

> names(d)=c("country","applicationdate","status")

> d

country applicationdate status

1 Algeria 3-Jun-87 Inactive since 2014

2 Andorra 4-Jul-97 Inactive since 1999

3 Azerbaijan 30-Jun-97 Work in progress

4 Bahamas 10-May-01 Inactive since 2019

5 Belarus 23-Sep-93 Inactive since 2019

6 Bhutan 1-Sep-99 Inactive since 2008

7 Bosnia and Herzegovina 11-May-99 Work in progress

6

8 Comoros 22-Feb-07 Strategic focus

9 Curaao[44] 31 October 2019[45] Activation

10 Equatorial Guinea 19-Feb-07 Activation

11 Ethiopia 13-Jan-03 Work in progress

12 Holy See None[a] Observer since 1997[46]

13 Iran 19-Jul-96 Inactive since 2011

14 Iraq 30-Sep-04 Reactivation

15 Lebanon[b] 30-Jan-99 Reactivation

16 Libya 10-Jun-04 Inactive since 2004

17 So Tom and Prncipe 14-Jan-05 Inactive since 2005

18 Serbia 23-Dec-04 Inactive since 2013

19 Somalia 12 December 2015[47] Activation

20 South Sudan 5 December 2017[48] Inactive since 2019

21 Sudan 11-Oct-94 Work in progress

22 Syria[b] 10-Oct-01 Inactive since 2010

23 Timor-Leste 9 April 2015[47] Strategic focus

24 Turkmenistan[c] 24 November 2021[50] Activation

25 Uzbekistan 8-Dec-94 Work in progress

Each variable (column) is “messy”, and needs cleaning.

2. For country (first column), we need to remove brackets for Curaao, Lebanon... with

gsub function and regular expression

dc = d

dc$country = gsub("\\[(.*)\\]", "", d$country)

3. For applicationdate (second column), we need to remove brackets as well. Plus, we

need to standardize the format as day-month-year

dc$applicationdate = gsub("\\[(.*)\\]", "", d$applicationdate)

fdate_con = function(x) {

xs = strsplit(x,"\\s+")

day = xs[[1]][1]

mon = xs[[1]][2]

7

mon = substr(mon,1,3)

year = xs[[1]][3]

year = substr(year,nchar(year)-1,nchar(year))

return(paste(day,"-",mon,"-",year,sep=""))

}

r = regexpr("[0-9]?[0-9] (.*)",dc$applicationdate)

dc$applicationdate[r!=-1]=sapply(dc$applicationdate[r!=-1],fdate_con)

4. For status, we need to remove brackets, extract the first part of string, and extract

year if necessary

dc$status = gsub("\\[(.*)\\]", "", d$status)

dc$statusn = sapply(strsplit(d$status, "\\s+"),"[",1)

dc$since = NA

r = regexpr("since",dc$status)

f_pick = function(x) {

return(strsplit(x, "\\s+")[[1]][3])

}

dc$since[r!=-1]=sapply(dc$status[r!=-1],f_pick)

The clean data look like

> dc[,-3]

country applicationdate statusn since

1 Algeria 3-Jun-87 Inactive 2014

2 Andorra 4-Jul-97 Inactive 1999

3 Azerbaijan 30-Jun-97 Work <NA>

4 Bahamas 10-May-01 Inactive 2019

5 Belarus 23-Sep-93 Inactive 2019

6 Bhutan 1-Sep-99 Inactive 2008

7 Bosnia and Herzegovina 11-May-99 Work <NA>

8 Comoros 22-Feb-07 Strategic <NA>

9 Curaao 31-Oct-19 Activation <NA>

10 Equatorial Guinea 19-Feb-07 Activation <NA>

8

11 Ethiopia 13-Jan-03 Work <NA>

12 Holy See None Observer 1997

13 Iran 19-Jul-96 Inactive 2011

14 Iraq 30-Sep-04 Reactivation <NA>

15 Lebanon 30-Jan-99 Reactivation <NA>

16 Libya 10-Jun-04 Inactive 2004

17 So Tom and Prncipe 14-Jan-05 Inactive 2005

18 Serbia 23-Dec-04 Inactive 2013

19 Somalia 12-Dec-15 Activation <NA>

20 South Sudan 5-Dec-17 Inactive 2019

21 Sudan 11-Oct-94 Work <NA>

22 Syria 10-Oct-01 Inactive 2010

23 Timor-Leste 9-Apr-15 Strategic <NA>

24 Turkmenistan 24-Nov-21 Activation <NA>

25 Uzbekistan 8-Dec-94 Work <NA>

5. If data is small, you may manually clean data record after record in Excel. Regular

expression becomes a must if there are thousands of observations.

9

