Eco311 Optional Reading: Multinomial Logistic Regression (MLR)

(Jing Li, Miami University)

- 1. We can use Logistic Regression when the outcome or dependent variable takes only <u>two</u> categories. Examples are Employed vs Unemployed, and Trump vs Biden. Multinomial Logistic Regression (MLR) is needed if there are more than two categories.
- 2. For instance, in the data we will use, the outcome variable y is insure, which takes three categories of Indemnity, Prepaid, and Uninsure.

There are 28 missing values for insure; among the 616 non-missing values, 297 are Indemnity, 277 are Prepaid, and 45 are Uninsure. We wonder whether the predictor nonwhite matters for insure.

3. The **multinom** function in the **nnet** package can be used to estimate the MLR:

(Intercept) nonwhite Prepaid 0.09376432 0.2157328 Uninsure 0.17821926 0.4075742

Residual Deviance: 1103.567

AIC: 1111.567

4. Just like a logistic regression, MLR is fitted by maximum likelihood method. The distribution for the *i*-th observation is

$$P(y_{i} = Prepaid) = \frac{exp(\beta_{0}^{Prepaid} + \beta_{1}^{Prepaid} nonwhite)}{1 + exp(\beta_{0}^{Prepaid} + \beta_{1}^{Prepaid} nonwhite) + exp(\beta_{0}^{Uninsure} + \beta_{1}^{Uninsure} nonwhite)}$$

$$P(y_{i} = Uninsure) = \frac{exp(\beta_{0}^{Uninsure} + \beta_{1}^{Uninsure} nonwhite)}{1 + exp(\beta_{0}^{Prepaid} + \beta_{1}^{Prepaid} nonwhite) + exp(\beta_{0}^{Uninsure} + \beta_{1}^{Uninsure} nonwhite)}$$

$$P(y_{i} = Indemnity) = \frac{1}{1 + exp(\beta_{0}^{Prepaid} + \beta_{1}^{Prepaid} nonwhite) + exp(\beta_{0}^{Uninsure} + \beta_{1}^{Uninsure} nonwhite)}$$

We can verify that each probability is bounded between 0 and 1, and their sum is equal to one.

5. Notice that there are two intercepts $\beta_0^{Prepaid}$, $\beta_0^{Uninsure}$, and two slopes $\beta_1^{Prepaid}$, $\beta_1^{Uninsure}$. The interpretation is based on the log odds:

$$log\left(\frac{P(y_i = Prepaid)}{P(y_i = Indemnity)}\right) = \beta_0^{Prepaid} + \beta_1^{Prepaid} nonwhite$$
 (4)

$$log\left(\frac{P(y_i = Uninsure)}{P(y_i = Indemnity)}\right) = \beta_0^{Uninsure} + \beta_1^{Uninsure} nonwhite$$
 (5)

So the log odds of Prepaid relative to Indemnity is $\beta_0^{Prepaid} = -0.1879116$ when non-white is zero. When nonwhite changes from 0 to 1, the log odds of Prepaid relative to Indemnity rises by $\beta_1^{Prepaid} = 0.6608144$. Moreover, the log odds of Uninsure relative to Indemnity is $\beta_0^{Prepaid} = -1.9419427$ when nonwhite is zero. When non-white changes from 0 to 1, the log odds of Uninsure relative to Indemnity rises by $\beta_1^{Uninsure} = 0.3780860$.

6. To sum up, for a white person (nonwhite is zero), the two negative intercepts imply that $P(y_i = Prepaid) < P(y_i = Indemnity)$ and $P(y_i = Uninsure) < P(y_i = Indemnity)$. So a white person is more likely to choose Indemnity. For a black person (nonwhite is

one), the two positive slopes imply that the probability of choosing Prepaid or Uninsure relative to Indemnity rises.

7. We can verify this finding by **table** function

```
> table(data$insure[data$nonwhite==0])
Indemnity
            Prepaid Uninsure
      251
                208
                            36
> table(data$insure[data$nonwhite==0])/length(data$insure[data$nonwhite==0])
 Indemnity
              Prepaid
                        Uninsure
0.48455598 0.40154440 0.06949807
> table(data$insure[data$nonwhite==1])
Indemnity
            Prepaid Uninsure
       43
                 69
> table(data$insure[data$nonwhite==1])/length(data$insure[data$nonwhite==1])
              Prepaid
 Indemnity
                        Uninsure
0.34126984 0.54761905 0.07142857
> \log(0.40154440/0.48455598)
[1] -0.1879149
 > \log(0.06949807/0.48455598) 
[1] -1.941934
```

We see the change in probability of choosing Prepaid across race (from 0.40154440 to 0.54761905) is substantial; while the change in probability of choosing Uninsure is marginal (from 0.06949807 to 0.07142857). That explains the t value for $\beta_1^{Prepaid} = 0.6608144/0.2157328 > 1.96$ is significant, but the t value for $\beta_1^{Uninsure} = 0.3780860/0.4075742 < 1.96$ is not. The log odds are the same as the intercepts reported before.

8. We get the same results by maximizing a user-defined log likelihood function

```
> # user-defined log likelihood
> data = data[!is.na(data$insure),]
```

```
> cat("sample size is", nrow(data), "\n")
sample size is 616
> data$y1 = (data$insure=="Prepaid")
> data$y2 = (data$insure=="Uninsure")
> data$y3 = 1-data$y1-data$y2
> fmullogliklogit = function(b) {
+ zz1 = b[1]+data$nonwhite*b[2]
+ zz2 = b[3]+data$nonwhite*b[4]
+ p1 = \exp(zz1)/(1+\exp(zz1)+\exp(zz2))
+ p2 = \exp(zz^2)/(1+\exp(zz^2)+\exp(zz^2))
+ p3 = 1/(1+exp(zz1)+exp(zz2))
+ return(-sum(data\$y1*log(p1)+data\$y2*log(p2)+data\$y3*log(p3)))
+ }
> optim(c(1,0,1,0), fmullogliklogit,method="BFGS")
$par
[1] -0.1879186  0.6607970 -1.9419690  0.3783258
$value
[1] 551.7835
```

9. We can also get the same results by running two logistic regressions: one compares Prepaid to Indemnity; the other compares Uninsure to Indemnity:

10. Note that we exclude Uninsure when running the first logistic regression. This is called Independence of Irrelevant Alternatives (IIA) assumption. Google to learn more.