
Eco311 Optional Reading: Multinomial Logistic Regression (MLR)

(Jing Li, Miami University)

1. We can use Logistic Regression when the outcome or dependent variable takes only two

categories. Examples are Employed vs Unemployed, and Trump vs Biden. Multinomial

Logistic Regression (MLR) is needed if there are more than two categories.

2. For instance, in the data we will use, the outcome variable y is insure, which takes

three categories of Indemnity, Prepaid, and Uninsure.

> library(readxl)

> setwd("/Users/lij14/Dropbox")

> data = read_excel("mlogitdata.xls")

> table(is.na(data$insure))

FALSE TRUE

616 28

> table(data$insure)

Indemnity Prepaid Uninsure

294 277 45

There are 28 missing values for insure; among the 616 non-missing values, 297 are

Indemnity, 277 are Prepaid, and 45 are Uninsure. We wonder whether the predictor

nonwhite matters for insure.

3. The multinom function in the nnet package can be used to estimate the MLR:

> install.packages("nnet")

> library(nnet)

> model = multinom(insure ~ nonwhite, data = data)

> summary(model)

Coefficients:

(Intercept) nonwhite

Prepaid -0.1879116 0.6608144

Uninsure -1.9419427 0.3780860

Std. Errors:
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(Intercept) nonwhite

Prepaid 0.09376432 0.2157328

Uninsure 0.17821926 0.4075742

Residual Deviance: 1103.567

AIC: 1111.567

4. Just like a logistic regression, MLR is fitted by maximum likelihood method. The

distribution for the i-th observation is
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We can verify that each probability is bounded between 0 and 1, and their sum is equal

to one.

5. Notice that there are two intercepts βPrepaid
0 , βUninsure

0 , and two slopes βPrepaid
1 , βUninsure

1 .

The interpretation is based on the log odds:
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So the log odds of Prepaid relative to Indemnity is βPrepaid
0 = −0.1879116 when non-

white is zero. When nonwhite changes from 0 to 1, the log odds of Prepaid rela-

tive to Indemnity rises by βPrepaid
1 = 0.6608144. Moreover, the log odds of Uninsure

relative to Indemnity is βPrepaid
0 = −1.9419427 when nonwhite is zero. When non-

white changes from 0 to 1, the log odds of Uninsure relative to Indemnity rises by

βUninsure
1 = 0.3780860.

6. To sum up, for a white person (nonwhite is zero), the two negative intercepts imply that

P (yi = Prepaid) < P (yi = Indemnity) and P (yi = Uninsure) < P (yi = Indemnity).

So a white person is more likely to choose Indemnity. For a black person (nonwhite is
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one), the two positive slopes imply that the probability of choosing Prepaid or Uninsure

relative to Indemnity rises.

7. We can verify this finding by table function

> table(data$insure[data$nonwhite==0])

Indemnity Prepaid Uninsure

251 208 36

> table(data$insure[data$nonwhite==0])/length(data$insure[data$nonwhite==0])

Indemnity Prepaid Uninsure

0.48455598 0.40154440 0.06949807

> table(data$insure[data$nonwhite==1])

Indemnity Prepaid Uninsure

43 69 9

> table(data$insure[data$nonwhite==1])/length(data$insure[data$nonwhite==1])

Indemnity Prepaid Uninsure

0.34126984 0.54761905 0.07142857

> log(0.40154440/0.48455598)

[1] -0.1879149

> log(0.06949807/0.48455598)

[1] -1.941934

We see the change in probability of choosing Prepaid across race (from 0.40154440

to 0.54761905) is substantial; while the change in probability of choosing Uninsure is

marginal (from 0.06949807 to 0.07142857). That explains the t value for βPrepaid
1 =

0.6608144/0.2157328 > 1.96 is significant, but the t value for βUninsure
1 = 0.3780860/0.4075742 <

1.96 is not. The log odds are the same as the intercepts reported before.

8. We get the same results by maximizing a user-defined log likelihood function

> # user-defined log likelihood

> data = data[!is.na(data$insure),]
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> cat("sample size is", nrow(data), "\n")

sample size is 616

> data$y1 = (data$insure=="Prepaid")

> data$y2 = (data$insure=="Uninsure")

> data$y3 = 1-data$y1-data$y2

>

> fmullogliklogit = function(b) {

+ zz1 = b[1]+data$nonwhite*b[2]

+ zz2 = b[3]+data$nonwhite*b[4]

+ p1 = exp(zz1)/(1+exp(zz1)+exp(zz2))

+ p2 = exp(zz2)/(1+exp(zz1)+exp(zz2))

+ p3 = 1/(1+exp(zz1)+exp(zz2))

+ return(-sum(data$y1*log(p1)+data$y2*log(p2)+data$y3*log(p3)))

+ }

> optim(c(1,0,1,0), fmullogliklogit,method="BFGS")

$par

[1] -0.1879186 0.6607970 -1.9419690 0.3783258

$value

[1] 551.7835

9. We can also get the same results by running two logistic regressions: one compares

Prepaid to Indemnity; the other compares Uninsure to Indemnity:

> # alternatively, run two logistic regressions

> datas1 = data[data$y2==0,]

> coef(glm(formula = y1~nonwhite, family = "binomial",data=datas1))

(Intercept) nonwhite

-0.1879149 0.6608212

> datas2 = data[data$y1==0,]

> coef(glm(formula = y2~nonwhite, family = "binomial",data=datas2))

(Intercept) nonwhite

-1.9419340 0.3779585

10. Note that we exclude Uninsure when running the first logistic regression. This is called

Independence of Irrelevant Alternatives (IIA) assumption. Google to learn more.
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