
Eco311 Optional Reading: Maximum Likelihood Method

(Jing Li, Miami University)

1. Maximum Likelihood (ML) is a statistical method used to estimate a population pa-

rameter. For instance, suppose we are interested in a Bernoulli distribution that has

only two outcomes (1/0, yes/no, head/tail, Trump/Biden, vaccinated/unvaccinated...),

and the unknown parameter is the population proportion θ : we want to know the pro-

portion of persons voting for Trump, or the probability of seeing head after flipping a

coin.

2. θ is not known unless we flip the coin infinity times, or we ask all voters who they

vote. Using a sample means that we flip the coin finite times, or we only ask some

voters who they vote.

3. Suppose the outcomes of tossing the coin 10 times are

{“H”, “T”, “H”, “T”, “T”, “H”, “H”, “H”, “T”, “H”}

where “H” denotes head; “T” denotes tail. We can convert those strings into numeric

values:

{1, 0, 1, 0, 0, 1, 1, 1, 0, 1}

where 1 denotes head; 0 denotes tail

4. Let y be the outcome variable that equals either 1 or 0. Our goal is estimating the

unknown parameter θ = P (y = 1), which represents the population proportion. Based

on the fact that we observe 6 heads out of 10 tossing, we compute the sample proportion

as

θ̂ =
number of heads

number of tossing
=

6

10
= 0.6

We put a hat above θ to emphasize it is a sample estimate.

5. Intuitively, the unknown population proportion should be close to 0.6, θ ≈ 0.6. We say

“close” because we may get different sample proportion if we toss the coin ten times

again. There is inherent uncertainty associated with using samples. A key issue of

statistics is accounting for the sampling uncertainty.
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6. The number of heads we see after tossing a coin ten times follows Binomial distribution:

P (seeing k heads after 10 tossing) = Ck
10θ

k(1− θ)10−k, (k = 0, 1, 2, ...10) (1)

where θ is the probability of seeing head when the coin is tossed once: θ = P (y = 1).

For given θ, Ck
10θ

k(1 − θ)10−k is a function of k, called probability mass function. For

instance, if θ = 0.1, the probability of seeing 6 heads after tossing the coin 10 times is

C6
100.1

60.94 = 0.000137781

The R code to get that probability is

> choose(10, 6)*0.1^6*0.9^4

[1] 0.000137781

Equivalently, we can use this R function

> dbinom(6,10,0.1)

[1] 0.000137781

This small probability makes sense because if the true probability of getting head is

0.1, then it is extremely rare to see 6 heads after tossing the coin 10 times. It is much

more likely to see only one or two heads after ten tossing. For example, the probability

of seeing only one head is

> dbinom(1,10,0.1)

[1] 0.3874205

which is much greater than 0.000137781.

7. More generally, we can list the probability of seeing 6 heads assuming θ equals 0.1, 0.2,

0.3,...0.9, and see which θ value produces the greatest probability

2



> theta = 0.1*seq(1,9,1)

> probability = dbinom(6,10,theta)

> cbind(theta,probability)

theta probability

[1,] 0.1 0.000137781

[2,] 0.2 0.005505024

[3,] 0.3 0.036756909

[4,] 0.4 0.111476736

[5,] 0.5 0.205078125

[6,] 0.6 0.250822656

[7,] 0.7 0.200120949

[8,] 0.8 0.088080384

[9,] 0.9 0.011160261

We see that the greatest probability 0.250822656 comes from θ = 0.6, which implies

that it is mostly likely to see 6 heads after 10 tossing if θ = 0.6. Notice that the

probabilities of seeing 6 heads when θ = 0.5 or 0.7 are about 20 percent, so those two

θ values are also plausible. Put differently, we are not confident to rule out θ = 0.5 or

0.7 if seeing 6 heads from 10 tossing. The most likely θ value is 0.6, but 0.5 and 0.7

are also compatible with the reality.

8. For given k = 6, the function in (1) is a function of θ, called likelihood function

C6
10θ

6(1− θ)10−6, θ ∈ (0, 1), (likelihood function) (2)

Do not confuse it with the probability mass function, for which we hold θ constant and

let k vary. Here for function (2), we hold k = 6 constant and let θ vary.

9. We use these R codes to plot the likelihood function

theta = 0.1*seq(1,9,0.1)

likelihood = dbinom(6,10,theta)

plot(theta,likelihood)

abline(v=0.6)
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where a vertical line is drawn for θ = 0.6, the value maximizing the likelihood function.

10. (A technical issue) Likelihood function is not probability function since it does not sum

up to 1

> sum(likelihood)

[1] 9.071025

We can make it “look” like a probability function by rescaling

> s.likelihood = likelihood/sum(likelihood)

> sum(s.likelihood)

[1] 1

11. By definition, the maximum likelihood (ML) estimate of a population parameter is the

value that maximizes the likelihood function (the value that corresponds to the peak

of hump). For this example, the ML estimate is θ̂ = 0.6. For any other value, the

chance of seeing 6 heads from 10 tossing gets smaller. In light of that, θ̂ = 0.6 is the

estimate that is mostly supported by the observed reality.

12. Next, suppose we toss the coin 100 times, and see 60 heads. We use R code

dbinom(60,100,theta)/sum(dbinom(60,100,theta))

to compute the new rescaled likelihood (red color), and compare it to the old one

(black)
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theta = 0.1*seq(1,9,0.1)

likelihood = dbinom(6,10,theta)/sum(dbinom(6,10,theta))

likelihood2 = dbinom(60,100,theta)/sum(dbinom(60,100,theta))

matplot(theta,cbind(likelihood,likelihood2), lwd = 2, type="l", lty=c(1,1),col=c("black","red"))

abline(v=0.6)
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We see that the ML estimate is still θ̂ = 0.6. However, the red curve is narrower

than the black one, indicating greater confidence or less uncertainty. In other words,

getting 60 heads from 100 tossing is more convincing than getting 6 heads from 10

tossing in terms of justifying the estimate θ̂ = 0.6.

13. Another way to understand the implication of narrower likelihood function is comparing

probabilities of seeing 6 heads from 10 tossing and seeing 60 heads from 100 tossing

assuming the true probability is θ = 0.5 :

> dbinom(6,10,0.5)

[1] 0.2050781

> dbinom(60,100,0.5)

[1] 0.01084387

The second probability is much less than the first one. According to the first proba-

bility 0.2050781, which is from the black likelihood, we cannot rule out that the true

probability is 0.5 when seeing 6 heads out of 10 tossing. But according to the second

probability 0.01084387, which is from the red likelihood, we can rule out θ = 0.5 with

confidence since 0.01084387 is close to 0. In short, a narrower likelihood allows us to
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rule out more θ values, or equivalently, we can have more confidence on the values that

we cannot rule out.

14. We can also compare the slopes of the two likelihoods. A narrow likelihood is also

a steep one, which means that the deduction in probability is greater than a wide

likelihood when moving away from the peak of hump

> dbinom(6,10,0.5)-dbinom(6,10,0.6)

[1] -0.04574453

> dbinom(60,100,0.5)-dbinom(60,100,0.6)

[1] -0.07037528

So when θ changes from 0.6 to 0.5, the probability of seeing 6 heads from 10 tossing

reduces by 0.04574453. By contrast, the probability of seeing 60 heads from 100 tossing

reduces by 0.07037528, a bigger change. The greater reduction in probability adds more

confidence to the ML estimate.

15. Lesson 1: the value that maximizes the likelihood function is the maximum likelihood

estimate

16. Lesson 2: the width of likelihood function measures confidence—a narrow or steep

likelihood (from a big sample) leads to more confidence in the estimate than a wide or

flat likelihood (from a small sample).

17. Obtaining an interval estimate from the rescaled likelihood is easy:

> theta[as.logical((cumsum(likelihood2)>0.025)*(cumsum(likelihood2)<0.975))]

[1] 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68

The 95 percent confidence interval based on the sample of seeing 60 heads out of

100 tossing is (0.5, 0.68). By contrast, the 95 percent confidence interval based on the

sample of seeing 6 heads out of 10 tossing is (0.31, 0.82).

> theta[as.logical((cumsum(likelihood)>0.025)*(cumsum(likelihood)<0.975))]

[1] 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50

[21] 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70

[41] 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82

The wider confidence intervals indicate greater uncertainty.
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