Eco311 Optional Reading: ANOVA and ANCOVA

(Jing Li, Miami University)

1.

Social science such as economics differs from natural science in many ways. From econo-
metrics perspective, one key difference is that experiments and randomized controlled
trials (RCT) are routinely used in natural science but not in social science. Accordingly,
different terminology is developed for a statistical analysis of experimental data. This
note introduces analysis of variance (ANOVA) and analysis of covariance (ANCOVA),

and explains how the two methods are closely related to regression analysis.

Suppose we run a randomized controlled trial that randomly assigns NBA players to
different positions. For instance, players with last digit of SSN being 7 will play center
position. The categorical variable “position”, denoted by =z, is called treatment, and

in this case = takes three levels—center, forward, guard.

. We are interested in estimating treatment effect—how the treatment affects outcome

variable y such as wage. When experimental data are used, estimating treatment
effect is easy since the difference in outcome can only be attributed to treatment—

other confounding factors are either constant in an experiment or statistically similar

in RCT.

The null hypothesis of ANOVA states that there is no treatment effect, i.e., the average

wages across positions (conditional means) are the same:

HO : Meenter = Hforward = Hguard, (ANOVA Hyp0theSiS) (1)

This hypothesis involves multiple restrictions, so F test is needed.

Notice that we can use a two-sample t test if there is no center position, i.e., when
there are only two positions (levels). In light of this, ANOVA or F test generalizes

the two sample t test to cases where there are more than two levels. Another example

of ANOVA is testing the hypothesis of equal average SAT scores across students who

attend public schools, private schools, and are home schooled.

In order to test hypothesis (1), consider a decomposition of variance for y :

var(y) = E(var(y|x)) + var(E(y|z)), (Variance Decomposition) (2)



Proof

var(y) = E(y — E(y))? = E(y — E(ylz) + E(y|z) — E(y))? (3)
= E(y— E(ylx))> + E(E(y|z) — E(y))* + 2E[(y — E(y|z))(E(y|z) — E(y))] (4)
= E(var(y|z)) + var(E(yl|z)) (5)

where y is wage, = is position. The last equality follows because law of iterated ex-
pectation implies that E[(y — E(y|z))(E(y|z) — E(y))] = 0, and E(y — E(y|r))? =
E(E(y — E(ylz))*|lx) = E(var(y|))

. The meanings for math terms are as follows: E(var(y|z)) is the average conditional
variance, or it entails comparing y to level-i mean. We call this within variation. By
contrast, var(E(y|x)) is the variance of conditional means, and it involves comparing

level-i mean to level-j mean. We call that between variation

. Under the null hypothesis of equal conditional means we have var(E(y|z)) = var(p) =
0. Under the alternative hypothesis var(E(y|x)) # 0. This contrast suggests comparing
var(E(y|x)) to E(var(y|x)) with a ratio given by

var(E(y|r)) between variation

(6)

E(var(y|r))  within variation
That is the intuition for the F test.

. Those population conditional moments in (6) are of course unknown, and need to be
estimated by its sample counterparts. Toward that end, let’s derive a sample version
of the variance decomposition (2). Let i be the index for level (i = 1 for center, i = 2
for forward, i = 3 for guard); and j be the index for observation for the given i-the
level (given ¢ = 1, j = 1 for the first center player, j = 2 for the second center player,
and so on). Let n; be the sample size for level-i subgroup. We can define the overall

unconditional mean (e.g., mean for all players) as
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and the level-i conditional mean (e.g., mean for all center players) as
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10.

11.

12.

The sum square (SS) decomposition is

Z Z(Zlm —7)* = Z ni(ii — 9)° + Z Z(yij —7;)? (7)

Proof

ZZ (435 — ZZ (i — B + 9 — 9)° (8)
_ZZ Yij — +ZZ —i-QZZyzj Ui)(¥i — 9) (9)
:ZZ Yij — i) +an‘ Ui —9)° (10)

We may describe the sum square decomposition as

Total Sum Square (TSS) = Within Sum Square (WSS)+Between Sum Square (BSS)

where TSS = 37, 37 (yi; — §)*, WSS =32, 3~ (yij — 5:)% BSS = 3, (¥ — 9)°

Let df denote degree of freedom. The F test for the null hypothesis (1) is computed as
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(k—1)  BSS/df.between
/(n—k)  WSS/df .within

(11)

where n = ), n; is total number of observations, and & is the number of levels (for

position, k = 3).

When the null hypothesis is true, y; — y ~ 0, BSS &~ 0, so the numerator of F test is
close to zero. Thus, a big F test or small p value rejects the null hypothesis, where the

p value is from an F distribution.

Using NBA data, the F test for the null hypothesis (1) or one way ANOVA is provided

by aov function in R

> library("readxl")
> setwd("C:/Users/1ij14/Dropbox/311r")
> data = read_excel("311_nba.xls")

> data = subset(data, is.na(wage)==F)



13.

> attach(data)
> summary (aov(wage~factor(position)))

Df Sum Sq Mean Sq F value Pr(>F)
factor(position) 2 5.68 2.8395 2.873 0.0582 .
Residuals 277 273.79 0.9884

Given the p value 0.0582 we can reject the null hypothesis (1) at the 10% level.

To see how to compute the F test 2.873, use the codes below

> mean(wage)
[1] 1.42027
> tapply(wage,position,mean)

center forward guard
1.661021 1.477314 1.273954
> tapply(wage,position,length)
center forward guard

47 112 121

(1.661021-1.42027) "2%47+(1.477314-1.42027) "2%112+(1.273954-1.42027) "
2

ss.within = sum((wage[position=="center"]-1.661021) "2)+sum((wage[position=="forwa

> ss.between
> df .between
>

> df .within = length(wage)-3

> f = (ss.between/df.between)/(ss.within/df.within)
> f

[1] 2.872805

where the unconditional mean is § = 1.42027. We get conditional mean ¢; and n; using
tapply. Then we apply formula (11). Note that R displays the following sum squares

in aov output

> ss.between
[1] 5.679032
> ss.within
[1] 273.7902



Mean squares are computed as sum squares divided by degree of freedom. The F test

is the ratio of two mean squares

5.68/2  2.8395

2873 = =
273.79/277  0.9884

14. Next I will explain how ANOVA is related to a dummy variable regression. First,
rewrite the null hypothesis (1) as

HO * Hforward — Heenter = 07 Hguard — Hcenter = 0

The two differences of conditional means are 5, and S5 in the following regression
wage = Py + By forward + Grguard + u (12)

where the dummy variable forward equals one if a player is forward, and dummy
variable guard equals one if a player is guard. To avoid dummy variable trap we

exclude the dummy variable for center. Thus, center is based group, and is captured

by o

> summary (lm(wage~factor(position)))$coef

Estimate Std. Error t value Pr(>|tl)
(Intercept) 1.6610213 0.1450174 11.453944 4.000835e-25
factor(position)forward -0.1837070 0.1727864 -1.063203 2.886161e-01
factor(position)guard -0.3870676 0.1708764 -2.265190 2.427344e-02
> summary (lm(wage~factor(position)))$fstat[1]
2.872816

It is reassuring to see that the F value 2.8728 reported by this dummy variable regres-
sion is the same as the F value based on formula (11). This finding is expected because

the regression-based F test is about
Hy:06,=0,62=0

which is the same as testing Ho : tforward — Meenter = 0, flguard — Heenter = 0

15. In practice the regression-based Wald test is preferred because formula (11) is valid only



when homoskedasticity holds. It is easy to account for heteroskedasticity by reporting
a heteroskedasticity-robust Wald test.

. It is straightforward to conduct a two-way ANOVA where two categorical variables are

treatments. For instance, the categorical variable “marr” is the second treatment, and

it equals one if a player is married.

> summary (aov(wage~factor(position)+marr))

Df Sum Sq Mean Sq F value Pr(>F)
factor(position) 2 5.68 2.840 2.945 0.05427 .
marr 1 7.66 7.658  7.942 0.00518 x*x*
Residuals 276 266.13 0.964

The F value for marr is computed as

7.658/1

7942 =
266.13/276

. The F value for marr 7.942 can be equivalently obtained from a regression:

> m = lm(wage~factor(position)+marr)
> library("car"
> linearHypothesis(m, c("marr"))
Res.Df RSS Df Sum of Sq F  Pr(>F)
1 277 273.79
2 276 266.13 1 7.6581 7.9421 0.005179 *x

The regression-based F value is computed as

(273.79 — 266.13)/1

7.942 =
266.13/276

where 273.79 is the RSS of restricted regression that drops marr

>m.r = lm(wage“factor(position))
> sum(resid(m.r)~2)
[1]1 273.7902

and 266.13 is the RSS of unrestricted regression



18.

19.

> m.u = lm(wage~factor(position)+marr)
> sum(resid(m.u) ~2)
[1] 266.1321

Finally, analysis of covariance (ANCOVA) is about using a categorical treatment and
quantitative control variable to explain outcome. We call the corresponding multiple
regression DVR II. For instance, DVR II below relates wage to position and points

(the quantitative control)

> summary (1m(wage~factor(position)+points+factor(position) :points))$coef

Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.41944639 0.15970290 2.6264169 9.123537e-03
factor(position)forward 0.04360719 0.21783127 0.2001879 8.414849e-01
factor(position)guard -0.23845826 0.21824598 -1.0926124 2.755415e-01
points 0.14739586 0.01416269 10.4073314 1.545759e-21
factor(position)forward:points -0.04810815 0.01913995 -2.5134938 1.253889e-02
factor(position)guard:points  -0.04570421 0.01877657 -2.4341090 1.557956e-02

we see that relative to center, there are no differences in intercepts for forward ¢t =
0.2001879 and guard ¢t = —1.0926124. However, the differences in slopes are significant—
t = —2.5134938, —2.4341090, which implies that as points rises wages of forward and

guard grow more slowly than center.

We can visualize the treatment effect of position on wage (after controlling for points)

as

plot(points, wage, pch=16, col=ifelse(position=="center", 2, ifelse(position=="forw
abline(1lm(wage [position=="center"] “points[position=="center"]), col=2)
abline(1lm(wage [position=="forward"] “points[position=="forward"]), col=3)

abline(1lm(wage [position=="guard"] “points[position=="guard"]), col=4)



wage
3

points

20. In short, ANOVA and ANCOVA can be conducted by running F tests based on re-

gressions that involve dummy variables.



