Exam 1, Econ 311, Spring 2014

Total points are 100. But it counts 20% toward your final grade. So the effective total points are 20

Note: (i) show me your work in details in order to get partial credits; (ii) round your answer to 2 decimal spaces

Last Name First Name

You may use the following facts to answer some questions. Let $Z \sim N(0, 1)$ then

$$P(Z < 1.96) = 0.975 \quad P(Z < 1.645) = 0.950 \quad P(Z < 1.28) = 0.900$$

Q1, 2, 3, 4, 5, 6 and 7 are based on Table 1, which summarizes the random variable y:

```
. sum y, detail
```

Table 1

<table>
<thead>
<tr>
<th>Percentiles</th>
<th>Percentile Value</th>
<th>Largest Value</th>
<th>Percentile Value</th>
<th>Largest Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>.5436599</td>
<td>.2617587</td>
<td>5%</td>
<td>1.371783</td>
</tr>
<tr>
<td>5%</td>
<td>1.371783</td>
<td>.2717461</td>
<td>10%</td>
<td>1.607834</td>
</tr>
<tr>
<td>25%</td>
<td>2.298603</td>
<td>.9708371</td>
<td>50%</td>
<td>3.034506</td>
</tr>
<tr>
<td>75%</td>
<td>3.651639</td>
<td>5.11299</td>
<td>90%</td>
<td>4.266587</td>
</tr>
<tr>
<td>95%</td>
<td>4.627887</td>
<td>5.313699</td>
<td>99%</td>
<td>5.278006</td>
</tr>
</tbody>
</table>

Q1 (5 points) Find the standard error of \bar{y}
Q2 (5 points). Under what condition the sample mean \bar{y} is an unbiased estimator of μ_y?

Q3 (10 points). Is the distribution of y symmetric? If not, skewed to left or right? What does that skewness mean?

Q4 (10 points). Find the two tailed t test for the null hypothesis $H_0 : \mu_y = 2$ against $H_1 : \mu_y \neq 2$, and draw a conclusion (using the critical value of 1.96)

Q5 (5 points). Find the 90% confidence interval for μ_y, and interpret the confidence interval.

Q6 (5 points). Find the 90% confidence interval for μ_y but assuming the sample size is 50, other than 200. All other numbers in Table 1 remain unchanged.
Q7 (5 points). Suppose y follows a normal distribution. Find the value x so that with 95% probability y will take a value greater than x.

Q8 (5 points). What does i.i.d sample mean? Please explicitly write down the assumptions for the i.i.d sample.

Q9 (5 points). In practice how can we obtain a random sample if the population is the distribution of family incomes of all Miami students? Be specific!

Q10 (5 points). Consider a non i.i.d sample with three observations $\{y_1, y_2, y_3\}$, where $E(y_1) = \mu, E(y_2) = \mu, E(y_3) = \mu$ and $\text{var}(y_1) = 1, \text{var}(y_2) = 2, \text{var}(y_3) = 3$. The sample mean is $\bar{y} = \frac{y_1 + y_2 + y_3}{3}$. Please find $E(\bar{y})$.
Q11 (10 points). Continue Q10. Please find \(\text{var}(\bar{y}) \) assuming \(\text{cov}(y_i, y_j) = 0 \), for all \(i \neq j \).

Q12 (5 points). Continue Q10. Suppose we observe \(y_i' \equiv y_i + e_i \) where \(y_i \) is the true value, and \(e_i \) is the error in measurement. Is \(\bar{y}' = \frac{y_1' + y_2' + y_3'}{3} \) an unbiased estimator for \(\mu_y \) when \(E(e_1) > 0 \), \(E(e_2) > 0 \), and \(E(e_3) > 0 \)? Please explain.

Q13 (5 points). Consider a Bernoulli random variable for the decision of a voter

\[
y = \begin{cases}
1, & \text{if voting for Republican} \\
0, & \text{if voting for Democratic}
\end{cases}
\]

and \(P(y = 1) = 0.6 \). Please find \(\text{var}(y) \)

Q14 (5 points). Continue Q13. Let \(\bar{y} = \frac{y_1 + \cdots + y_n}{n} \) be the sample proportion of voters who vote for Republican, where the sample is a random sample. Please tell me the following statement is true or false and why “\(\bar{y} \) cannot follow normal distribution even in large sample because \(y \) is a discrete random variable.”
Q15 (5 points). Let \(\bar{y} = \frac{y_1 + \ldots + y_n}{n} \) be the sample mean. Prove that \(\sum_{i=1}^{n} (y_i - \bar{y}) = 0 \)

Q16 and Q17 are based on the following result of a simple regression

```
. reg y x
```

```
Source | SS    df MS      Number of obs = 200
--------+--------------------------------------
Model   | 45.0853679 1 45.0853679    F( 1, 198) = 38.20
Residual| 233.711783 198 1.18036254   Prob > F = 0.0000
--------+--------------------------------------
Total   | 278.797151 199 1.40099071   R-squared = 0.1617
         |                                      Adj R-squared = 0.1575
         |                                      Root MSE = 1.0864

------------------------------------------------------------------------------
y | Coef.   Std. Err.     t    P>|t|     [95% Conf. Interval]
-------------+---------------------------------------------------------------
x |  .4549946  .0736201  6.18   0.000     .3098146   .6001747
_cons |  1.981414   .0769888 25.74   0.000     1.82959   2.133237
------------------------------------------------------------------------------
```
Q16 (5 points) How to interpret the coefficient of x, which is 0.4549946?

Q17 (5 points) Explicitly write down and explain the assumption under which the coefficient of x has causal interpretation.