Consider a simple regression

\[y = \beta_0 + \beta_1 x + u \]

(1)

Under the assumption of homoscedasticity \(var(u|x) = \sigma^2 \) there are three implications:

(A) \(var(y|x) = \sigma^2 \)

(B) the variance of \(\hat{\beta}_1 \) is \(var(\hat{\beta}_1|x) = \frac{\sigma^2}{\sum_{i=1}^{n}(x_i-\bar{x})^2} \). By default, stata command `reg y x` uses this formula to find se, t, etc.

(C) OLS is the best linear unbiased estimator (BLUE), a result called Gauss-Markov Theorem (covered in eco411).

Simply put, (A) implies that the variance of \(y \) remains constant across observations. It’s easy to think of a counterexample. Let \(y \) be consumption, and \(x \) be income. We believe the variation of \(y \) (measured by variance) can increase as \(x \) increases. In other words, there may be heteroskedasticity defined as

\[var(u|x) = h(x_i) \neq constant \]

(2)

So heteroskedasticity implies that the variance is function of \(x \), so varies from observation to observation.

(B) and (C) do not hold when heteroskedasticity is present

The fact that (B) fails in the presence of heteroskedasticity suggests we need a new formula for variance of \(\hat{\beta}_1 \). That new formula is [8.3] in the textbook:

\[var_{\text{heteroskedasticity-robust}}(\hat{\beta}_1|x) = \frac{\sum_{i=1}^{n}(x_i-\bar{x})^2\hat{u}_i^2}{\sum_{i=1}^{n}(x_i-\bar{x})^2} = \frac{\sum_{i=1}^{n}(x_i-\bar{x})^2\hat{u}_i^2}{SST_x} \]

(3)

Formula (3) is called heteroskedasticity-robust variance, and is valid no matter homoskedasticity is true or false. The stata command

`reg y x, r`

uses formula (3) to find the heteroskedasticity-robust standard error, t value, p value and confidence interval

Use command `reg y x, r` as long as the sample is large

The heteroskedasticity can be detected using either informal method or formal test. Informal method can be plotting the squared residual against \(x \). No pattern means homoskedasticity. Another informal method is summarizing squared residual by \(x \).

Exercise 1: can you think of other informal method?

Exercise 2: is the OLS estimate biased if heteroskedasticity is present?
One formal test for heteroskedasticity is Breusch-Pagan (BP) test, given by equation [8.16] in the textbook

\[BP\ Test = nR^2_{\bar{u}_i} \]

(4)

where \(R^2_{\bar{u}_i} \) denotes the R-squared of regressing squared residual onto the regressor. Read page 277 (5th edition).

The fact that (C) fails in the presence of heteroskedasticity suggests we may use a better (more efficient, with smaller variance) estimator, called \textit{generalized least squares} (GLS) estimator (or weighted least squares WLS in this context). We can show

\[\text{var} \left(\frac{u_i}{\sqrt{h(x_i)}} \right) = \text{constant} \]

(5)

Equation (5) shows the transformed or \textit{weighted} error term \(\frac{u_i}{\sqrt{h(x_i)}} \) is homoscedastic. So the idea of GLS is simple: we need to divide y and x by the square root of \(h(x_i) \), or equivalently, we need to weight y and x using the \textit{inverse} of \(h(x_i) \). Then apply the OLS using the transformed or weighted data. The result is GLS estimator. Since the weighted error term is homoscedastic,

\textit{GLS is BLUE when heteroskedasticity is present}

In practice, we need to estimate \(h(x_i) \). The so-called \textit{feasible} GLS (FGLS) estimator can be obtained in three-step procedure:

Step 1: regress the log squared residual on x, and save the fitted value, called ghat.

Step 2: get the exponential of ghat, called hhat

Step 3, let the weight (we) be the inverse of hhat, and use command

\[\text{reg } y \times [w = \text{we}] \]

The point of the log-exponential operation is to ensure we get \textit{non-negative} estimate of \(h(x_i) \), which is variance

Exercise 4: what if in step 1 we regress residual on x? What is ghat? Can we take log of residual?
Example: use Smoke data and estimate the demand for cigarettes

.* OLS, example 8.7, equation (8.35) in textbook

.* reg cigs lincome lcigpric educ age agesq restaurn

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 807</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>8003.02506</td>
<td>6</td>
<td>1333.83751</td>
<td>F(6, 800) = 7.42</td>
</tr>
<tr>
<td>Residual</td>
<td>143750.658</td>
<td>800</td>
<td>179.688322</td>
<td>R-squared = 0.0527</td>
</tr>
<tr>
<td>Total</td>
<td>151753.683</td>
<td>806</td>
<td>188.280003</td>
<td>Adj R-squared = 0.0456</td>
</tr>
</tbody>
</table>

| cigs | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------|-------|-----------|---|------|---------------------|
| lincome | .8802682 | .7277832 | 1.21 | 0.227 | -.548322 to 2.308858 |
| lcigpric | -.7508586 | .5773363 | -.13 | 0.907 | -12.08355 to 10.58183 |
| educ | -.5014982 | .1670772 | -3.00 | 0.003 | -.8294597 to -.1735368 |
| age | .7706936 | .1601223 | 4.81 | 0.000 | .456384 to 1.085003 |
| agesq | -.0090228 | .001743 | -5.18 | 0.000 | -.0124443 to -.0056013 |
| restaurn | -.2825085 | .111794 | -2.54 | 0.011 | -.5007462 to -.6427078 |
| _cons | -3.639841 | .2407866 | -1.5 | 0.128 | -.50.90466 to 43.62497 |

Note: the standard error, t value, p-value and confidence interval are all WRONG if heteroskedasticity is present!

First signal for heteroskedasticity: the variance changes across restaurn:

.* by restaurn: sum uhatsq

-> restaurn = 0

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>uhatsq</td>
<td>608</td>
<td>194.081</td>
<td>385.2502</td>
<td>.0044481</td>
<td>4930.936</td>
</tr>
</tbody>
</table>

-> restaurn = 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>uhatsq</td>
<td>199</td>
<td>129.394</td>
<td>311.7096</td>
<td>.0000874</td>
<td>2718.679</td>
</tr>
</tbody>
</table>

Now consider the formal BP test:

.* reg uhatsq lincome lcigpric educ age agesq restaurn

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 807</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1495266.57</td>
<td>6</td>
<td>249211.0949</td>
<td>F(6, 800) = 5.55</td>
</tr>
<tr>
<td>Residual</td>
<td>105559907</td>
<td>800</td>
<td>131194.883</td>
<td>R-squared = 0.0400</td>
</tr>
<tr>
<td>Total</td>
<td>109955173</td>
<td>806</td>
<td>134520.81</td>
<td>Adj R-squared = 0.0328</td>
</tr>
</tbody>
</table>

| uhatsq | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|-------|-----------|---|------|---------------------|
| lincome | 24.63848 | 19.7218 | 1.25 | 0.212 | -14.07411 to 63.35107 |
| lcigpric | 60.97655 | 156.4487 | 0.39 | 0.697 | -246.1219 to 368.075 |
| educ | -2.384225 | 4.527535 | -0.53 | 0.599 | -11.27148 to 6.503025 |
| age | 19.41748 | 4.339068 | 4.48 | 0.000 | 10.90018 to 27.93478 |
| agesq | -.2147895 | .0472335 | -4.55 | 0.000 | -.3075058 to -.1220733 |
| restaurn | -1.18137 | .3012789 | -2.36 | 0.018 | -130.3204 to -12.04232 |
| _cons | -636.303 | 652.4946 | -0.98 | 0.330 | -1917.107 to 644.5005 |
Income has significant effect on the demand for cigarettes, price does not.