
Lecture 6a: Unit Root and ARIMA Models
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Big Picture

• A time series is non-stationary if it contains a unit root

unit root ⇒ nonstationary

The reverse is not true.

• Many results of traditional statistical theory do not apply to unit

root process, such as law of large number and central limit theory.

• We will learn a formal test for the unit root

• For unit root process, we need to apply ARIMA model; that is,

we take difference (maybe several times) before applying the

ARMA model.
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Review: Deterministic Difference Equation

• Consider the first order equation (without stochastic shock)

yt = ϕ0 + ϕ1yt−1

• We can use the method of iteration to show that when

ϕ1 = 1

the series is

yt = ϕ0t+ y0

• So there is no steady state; the series will be trending if ϕ0 ̸= 0;

and the initial value has permanent effect.
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Unit Root Process

• Consider the AR(1) process

yt = ϕ0 + ϕ1yt−1 + ut

where ut may and may not be white noise. We assume ut is a

zero-mean stationary ARMA process.

• This process has unit root if

ϕ1 = 1

In that case the series converges to

yt = ϕ0t+ y0 + (ut + u2 + . . .+ ut) (1)
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Remarks

• The ϕ0t term implies that the series will be trending if ϕ0 ̸= 0.

• The series is not mean-reverting. Actually, the mean changes

over time (assuming y0 = 0):

E(yt) = ϕ0t

• The series has non-constant variance

var(yt) = var(ut + u2 + . . .+ ut),

which is a function of t.

• In short, the unit root process is not stationary.
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Random Walk

• Random walk (RW) is a special case of unit root process, which

assumes

ϕ1 = 1, ϕ0 = 0

• RW is not trending because ϕ0 = 0

• However, RW is still nonstationary because time-varying

variance: var(yt) = var(ut + u2 + . . .+ ut)

• If ϕ0 ̸= 0 we can call the series random walk with drift. The drift

term ϕ0 causes trending behavior.
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What causes nonstationarity?

• The RW is

yt = yt−1 + ut,

which implies

yt = y0 + (ut + u2 + . . .+ ut)

• Basically the nonstationarity is caused by the process of

summing (integrating).

• Notice that each shock u has coefficient of 1. So the impulse

response never decays

• This also explains why a unit root process is highly persistent.
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High Persistence

• A unit root series is highly persistent (non-ergodic) in the sense

that the autocorrelation decays to zero very slowly.

• The ACF function of a unit root series decreases to zero linearly

and slowly.

• So slow-decaying ACF is signal for nonstationarity (trend is

another signal).
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Why call it unit root?

We can use the lag operator to rewrite RW as

yt = yt−1 + ut

⇒ yt = Lyt + ut

⇒ (1− L)yt = ut

The equation

1− L = 0

has the root

L = 1,

which is called unit root.
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Multiple Unit Roots

• A time series possibly has multiple unit roots.

• For example, consider the series with two unit roots

(1− L)(1− L)yt = ut

⇒ (1− 2L+ L2)yt = ut

⇒ yt = 2Lyt − L2yt + ut

⇒ yt = 2yt−1 − yt−2 + ut

So the AR(2) process

yt = 2yt−1 − yt−2 + ut

is nonstationary and has two unit roots.
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Example

y.lag1 = c(NA, y[1:(T-1)]) # first lag

d.y = y - y.lag1 # difference

data = data.frame(y,y.lag1,d.y) # put data together

data # display

y y.lag1 d.y

1 0.00000000 NA NA

2 -0.45402484 0.00000000 -0.4540248368

3 0.89000211 -0.45402484 1.3440269472

4 -0.02792883 0.89000211 -0.9179309410
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Can we apply the ARMA model to unit root

process?

The answer is No, unless we transform the series into stationary

series.
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Stationary Transformation

• Define the difference operator ∆ as

∆ ≡ 1− L

so that

∆yt = (1− L)yt = yt − Lyt = yt − yt−1

• Then the equation

(1− L)(1− L)yt = ut

suggests that we can transform the nonstationary yt into the

stationary ut after taking difference two times

ut = ∆∆yt = (yt − yt−1)− (yt−1 − yt−2)
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Integrated Process and ARIMA model

• By definition, a series is integrated of order d if we need to take

difference d times before it becomes stationary.

• We use letter “I” to represent “integrated”. So ARIMA(p,d,q)

model means we take difference d times and then apply the

ARMA(p, q) model to the differenced series.

14



Why is unit root troublesome?

• For one thing, the law of large number (LLN) does not hold for a

unit root process.

• For a stationary and ergodic process LLN states that as T → ∞

1

T

T∑
t=1

yt → E(yt)

• Unit root may cause three troubles. First, E(yt) may not be a

constant. Second, the variance of yt is non-constant. Third, the

serial correlation between yt and yt−j decays to zero very slowly.
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Warning: you need to be very careful when

running a regression using a unit root process as

regressors. Many standard results do not apply.
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Unit Root Test

• Consider the simplest case when we fit the AR(1) regression

yt = ϕ1yt−1 + et (2)

where et is white noise.

• We want to test the null hypothesis that yt has a unit root, i.e.,

H0 : ϕ1 = 1

• We can always transform (2) into (after subtracting yt−1 on both

sides)

∆yt = βyt−1 + et (3)

where β ≡ ϕ1 − 1. Now the new null hypothesis is

H0 : β = 0
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Dickey-Fuller (DF) Unit Root Test

• DF test is the most popular test for unit root. It is nothing but

the t test for H0 : β = 0 based on the transformed equation (3)

• The alternative hypothesis is

H0 : β < 0

• Note this is an one-tailed test. The < sign indicates that the

rejection region is on the left. That means we need to reject the

null hypothesis when the t test is less than the critical value. We

don’t compute the absolute value of the t test.
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Why is DF test so famous

• Because under the null hypothesis the t test does NOT follow t

distribution or normal distribution. Instead, the t test follows the

bizarre distribution of

DF Test →
∫
WdW(∫
W 2

)1/2
where W stands for Brownian motion, and the numerator is a

stochastic integral!

• Intuitively, we are in this weird situation because the regressor

yt−1 is nonstationary under the null hypothesis.
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More weird stuff

• To make it worse, the distribution of the DF test will change

when we add an intercept, and change again when we add a trend

• Table A of the textbook reports the critical values for the

distribution of DF test under different situations

• In practice we always include an intercept in the testing

regression.
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Augmented Dickey-Fuller (ADF) Unit Root Test

• So far we assume the error is white noise in (2)

• What if the error is serially correlated? In that case, we need to

add enough number of lagged differences as additional regressors

until the error become white noise.

• The so called augmented Dickey Fuller test is the t test for the

null hypothesis

H0 : β = 0

based on the regression

∆yt = c0 + c1t+ βyt−1 +

p∑
i=1

γi∆yt−i + et (4)
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Remarks

• The series has no unit root and is stationary if the null

hypothesis is rejected.

• The trend c1t can be dropped if the series is not trending

• In practice we can use AIC to choose the number of lags p.

• More rigorously, you need to apply Ljung–Box test to ensure the

error is serially uncorrelated.

• The ADF test follows the same distribution as the DF test.
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Remember: you reject the null hypothesis of unit

root (at 5% level) when the ADF (or DF) test is

less than -2.86 if the regression has no trend, and

when the test is less than -3.41 if the regression has

a trend
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Why is a trend necessary

• A series can be trending for different reasons.

• The unit root series yt = ϕ0 + yt−1 + ut is trending because the

drift term ϕ0.

• By contrast the series

yt = ct+ ut

is trending, but it does not have unit root.

• We include a trend in the ADF test in order to distinguish those

two.
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Difference Stationary vs Trend Stationary

• Also there are two ways to make a trending series stationary,

depending on the cause of trend.

• For the unit root series yt = ϕ0 + yt−1 + ut we need to take

difference:

ϕ0 + ut = yt − yt−1

So it is called difference-stationary series.

• For series yt = ct+ ut we need to subtract trend from yt :

ut = yt − ct.

The process is called detrending. yt is called trend-stationary

series.
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Remarks

• Because ut is stationary, a trend-stationary series is

“trend-reverting”. That is, there is a tendency that the series

will go back to its trend after deviating from it.

• By contrast, a difference-stationary series is not trend-reverting.

There is tendency that once deviating from the trend, the series

will move further and further away from that trend. This is

caused by the (ut + u2 + . . .+ ut) in (1)

• In practice, if the ADF test rejects the null for a trending series,

then it is trend-stationary. Otherwise, it is difference-stationary.

26



ARIMA Model

1. Suppose the series is not trending

(a) If the ADF test (without trend) rejects, then apply ARMA

model directly

(b) If the ADF test (without trend) does not reject, then apply

ARMA model after taking difference (maybe several times)

2. Suppose the series is trending

(a) If the ADF test (with trend) rejects, then apply ARMA

model after detrending the series

(b) If the ADF test (with trend) does not reject, then apply

ARMA model after taking difference (maybe several times)
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Lecture 6b: Simulating the distribution of DF test
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Why do simulation?

• You need to go to a Ph.D program to really understand that

bizarre distribution of the DF test

• However, we can use simulation to visualize that distribution.
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How does simulation work

1. We need to generate a series that satisfies the null hypothesis. In

this case, we need to generate a random walk that has one unit

root

yt = yt−1 + et, et ∼ i.i.d.n(0, 1), y1 = 0, t = 2, . . . , T

2. We then run the testing regression

∆yt = c0 + βyt−1 + et

and we keep the t statistics for H0 : β = 0

DF test = tH0:β=0

3. We repeat Steps 1 and 2 many many times. Then we get many

many DF statistics. The distribution of them is what we want.
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R Code: Step 1

T = 1000

e = rnorm(T)

y = rep(0, T)

for (t in 2:T) y[t] = y[t-1]+e[t]

1. We let the sample size be 1000, T = 1000. This is big sample.

2. We generate 1000 i.i.d.n random shocks e. The R function

rnorm returns pseudo random number that seems like the normal

random variable.

3. Then we use loop to generate y recursively.
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R Code: Step 2

y.lag1 = c(NA, y[1:(T-1)])

d.y = y - y.lag1

co <- coef(ms <- summary(model<-lm(d.y~y.lag1)))

df[j] = co[2, "t value"]

1. We generate the first lag yt−1 and the difference ∆yt. Note the

first observation of yt−1 is missing value NA.

2. Then we run the testing regression using command lm

3. The t value is saved in a vector called df
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R Code: Step 3

skewness(df)

kurtosis(df)

jarque.test(df)

dfs = sort(df)

dfs[0.05*N]

hist(df)

1. We obtain the skewness and kurtosis of the DF distribution.

Those commands are in “moments” package

2. We apply Jarque–Bera test to DF distribution

3. We find the 5-th quantile (critical value) after sorting df vector

4. We draw the histogram of df
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Summary of DF Distribution

1. It is skewed because the skewness is nonzero

2. It has fatter tail than normal distribution because the kurtosis is

greater than 3

3. Jarque–Bera test rejects the normality for the DF distribution

4. The histogram of df is not centered around zero

5. The 5-th quantile of the DF distribution is -2.88. By contrast,

the 5-th quantile of normal distribution is -1.64. So it would be

too easy to reject the null hypothesis if you incorrectly use the

critical values of normal distribution.
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Lecture 6c: Empirical Example
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US Quarterly Real GDP

• We obtain the quarterly US real GDP from FRED data

• There are two visual signals that the GDP series is nonstationary

1. The GDP is trending

2. The ACF of GDP decays to zero slowly
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GDP: Time Series Plot and ACF

US Real GDP

Time

y

1950 1970 1990 2010

20
00

40
00

60
00

80
00

10
00

0
12

00
0

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

ACF

37



Unit Root Test for GDP

• The command for ADF test is adf.test, which is in “tseries”

package.

• Because GDP is trending, the testing regression should include

the trend. So we choose alternative = c(“explosive”) option.

• We try including one, four and eight lagged differences in the

regression, given that we have quarterly data.
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Result when one lagged difference is included

adf.test(y, alternative = c("explosive"), k = 1)

Augmented Dickey-Fuller Test

data: y

Dickey-Fuller = -1.6428, Lag order = 1, p-value = 0.2737

alternative hypothesis: explosive

1. The ADF test is -1.6428, greater than the critical value -3.41. So

we cannot reject the null hypothesis that there is one unit root in

GDP. Put differently, the GDP is difference stationary, not trend

stationary.

2. p-value = 0.2737 > 0.05 leads to the same conclusion.

3. The conclusion does not change when we change lag order
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A more transparent way

Instead of using the black-box like command adf.test, we can run the

testing regression explicitly as

T = length(y)

y.lag1 = c(NA, y[1:(T-1)])

d.y = y - y.lag1

dy.lag1 = c(NA, d.y[1:(T-1)])

tre = 1:T

summary(lm(d.y~y.lag1+dy.lag1+tre))

The p-value reported by lm command is wrong because it is based on

the normal rather than DF distribution.
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GDP Growth Rate

• Then we may wonder if taking difference once can achieve

stationarity.

• We get GDP quarterly growth rate after taking difference of log

GDP

• Now we see two signals for stationarity

1. The growth series is mean-reverting

2. The ACF of growth decays to zero very quickly
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GDP Growth Rate: Time Series Plot and ACF
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GDP Growth Rate: Unit Root Test

We then apply the ADF test to the growth

> d.ly = diff(log(y))

> adf.test(d.ly, alternative = c("stationary"), k = 1)

Augmented Dickey-Fuller Test

data: d.ly

Dickey-Fuller = -8.4206, Lag order = 1, p-value = 0.01

alternative hypothesis: stationary
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GDP Growth Rate: Unit Root Test

1. Because the growth series is not trending we choose alternative =

c(“stationary”) option

2. The ADF test is -8.4206, less than the critical value -2.86. So we

can reject the null hypothesis that there is one unit root in GDP

growth. In other words, GDP growth has no unit root, so is

stationary

3. p-value = 0.01 < 0.05 leads to the same conclusion.

4. The conclusion does not change when we change lag order

5. Thus GDP is integrated of order one: taking difference once is

enough to reach stationarity
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ARMA model applied to GDP Growth

1. We then apply ARMA model to GDP growth since it is

stationary

2. We try AR(1), AR(2), AR(3),AR(4), and ARMA(1,1) models.

The AIC picks the AR(3) model

arima(x = d.ly, order = c(3, 0, 0))

Coefficients:

ar1 ar2 ar3 intercept

0.3545 0.1268 -0.1177 0.0078

s.e. 0.0616 0.0650 0.0617 0.0009

aic = -1689.15
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Final Model

The final model for GDP is ARIMA(3,1,0)

ut = 0.3545ut−1 + 0.1268ut−2 − 0.1177ut−3 + et (5)

ut = ∆(log(GDPt))− 0.0078 (6)

Note that

E(∆(log(GDPt))) = 0.0078

1. So on average the real GDP grows 0.78% each quarter, or

4 ∗ 0.78% = 3.12% each year.

2. The real GDP is a random walk with drift. The drift term is

0.0078, and is significant.

3. This drift term causes the trend in the GDP
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Forecasting

In order to use the model to forecast GDP we need to

1. first forecast uT+1, uT+2, . . .

2. Then get ∆ log(GDPT+1) = uT+1 + 0.0078

3. Next log(GDPT+1) = log(GDPT ) + ∆ log(GDPT+1)

4. Finally, GDPT+1 = elog(GDPT+1)
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Is GDP trend-stationary?

• The answer is no according to the ADF test applied to GDP

• We can get the same answer by applying the ADF test to the

detrended GDP, which is the residual of regressing GDP onto a

linear trend. The R code to get the detrended GDP is

trend = 1:length(y)

model = lm(y~trend)

detrend.y = model$res
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Detrended GDP: Time Series Plot and ACF
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Remarks

We see two signals for nonstationarity for detrended GDP

1. The detrended series is very smooth (not choppy) with long swing

2. The ACF is slow-decaying
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ADF test applied to detrended GDP

adf.test(detrend.y, alternative = c("stationary"), k = 1)

Augmented Dickey-Fuller Test

data: detrend.y

Dickey-Fuller = -1.6428, Lag order = 1, p-value = 0.7263

alternative hypothesis: stationary

The p-value is greater than 0.05, not rejecting the null of unit root.

So the detrended series is not stationary. Therefore GDP is difference

stationary, not trend stationary.
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Does it matter?

The issue of trend-stationary vs difference-stationary is important for

GDP

1. The policy (shock) would have transitory effect (pushing the

series away from its trend temporarily) if GDP was

trend-stationary.

2. We just proved GDP is difference-stationary, so any policy shock

will have permanent effect (pushing the series away from its

trend permanently)
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Economic Theory Justification

• The fact that GDP is difference stationary can be justified by

macro theory

• For example, the random walk hypothesis of consumption

(Robert Hall, 1978, JPE) implies that the consumption has unit

root. So GDP has unit root as well (and is difference stationary)

since consumption is its biggest component.
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