
Log Transformation

(Jing Li, Miami University)

1. Log transformation is very common in data analysis, and you may wonder why. This

note discusses several cases that call on log transformation. First of all, I use log to

denote natural log, that is, log is ln you see in other books. Recall that log function

y = log(x) is defined for x > 0; as x rises, the function increases (because dy
dx

= 1
x
> 0)

at decreasing rate (because d2y
dx2 = −1

x2 < 0). The log function has no turning point

because the first order equation 1
x

= 0 does not have a solution.

2. Notice that log(10000) = 9.21034 < 10000. So log transformation is able to reduce the

impact of a large value. Given this property, we can

(a) use log transformation to downplay outliers (extreme values). The OLS method is

sensitive to outliers because the presence of outliers can greatly affect line fitting.

I use house data as an illustration. In the scatter plot of rprice against area shown

below, we see there is an outlier—a house with price greater than 250000. Two

OLS lines fitted with and without that outlier are included in the scatter plot

> ad = "https://www.fsb.miamioh.edu/lij14/400_house.txt"

> data = read.table(url(ad), header=T)

> attach(data)

> plot(area,rprice)

> abline(lm(rprice~area),col="blue")

> abline(lm(rprice[rprice<250000]~area[rprice<250000]),col="red")
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Now we can compare OLS results with and without outliers

> summary(lm(rprice~area))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 16225.83153 4381.25679 3.703465 2.505499e-04

area 32.03807 1.97527 16.219593 1.448699e-43

> summary(lm(rprice[rprice<250000]~area[rprice<250000]))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19481.95234 4091.739406 4.761289 2.926629e-06

area[rprice < 250000] 30.24629 1.850211 16.347485 4.997755e-44

> (32-30)/32

[1] 0.0625

We see the difference in the slope coefficient with and without the outlier is about

6.25 percent. By contrast, after taking log of rprice and running the log-level

model, the difference in the slope coefficient with and without outliers reduces

to 2.14 percent. The takeaway is, after log transformation, the issue of outliers

becomes secondary

> summary(lm(log(rprice)~area))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.047457e+01 5.151353e-02 203.33629 0.000000e+00

area 3.734732e-04 2.322464e-05 16.08091 4.990752e-43

> summary(lm(log(rprice)[rprice<250000]~area[rprice<250000]))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.048913e+01 5.137758e-02 204.15776 0.000000e+00

area[rprice < 250000] 3.654595e-04 2.323202e-05 15.73086 1.208208e-41

> (3.73-3.65)/3.73

[1] 0.02144772

(b) use log to mitigate heteroskedasticity. The standard error, t value, and p-value

reported by R lm function assume homoskedasticity (constant variance). However,

we see evidence of heteroskedasticity in house data—the variance of rprice when

area is less than 3000 is 775143694, smaller than the variance 2531633752 when

area is greater than 3000. The variance ratio is 3.266019. Actually in the scatter

plot we see that the rprice becomes more spread out as area rises. This finding

implies heteroskedasticity, which invalidates the conventional standard error, t
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value, and p-value (we need to use heteroskedasticity-robust standard error)

> var(rprice[area<3000])

[1] 775143694

> var(rprice[area>3000])

[1] 2531633752

> var(rprice[area>3000])/var(rprice[area<3000])

[1] 3.266019

> var(log(rprice)[area>3000])/var(log(rprice)[area<3000])

[1] 1.130154

After taking log, the variance ratio drops to 1.130154, close to unity. So the

data become almost homoskedastic after taking log. Put differently, the reported

standard error, t value, and p-value in the log level model are more likely not to

suffer from heteroskedasticity.

(c) For the method of maximum likelihood and Bayesian inference, log transformation

can mitigate the issue of overflowing.

> prod(rprice)

[1] Inf

> sum(log(rprice))

[1] 3614.902

For instance, instead of directly computing

y1y2...yn,

which can be extremely large if y is house price (R reports the product as infinity

Inf, an example of data overflowing), we can consider the log transformation

y1y2...yn = elog(y1y2...yn) = e
∑

i log(yi) = e3614.902

which clearly is not infinity, so the overflowing issue is prevented

3. If y follows a skewed log-normal distribution, then its log follows symmetric normal

distribution.
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> par(mfrow = c(1, 2))

> hist(rprice)

> hist(log(rprice))
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We see the histogram of rprice becomes more symmetric or more bell-shaped after

taking log. To see why, suppose every year the price of a house grows by a random

percentage

pt = p0g1g2...gt ⇒ log(pt) = log(p0) +
t∑

i=1

log(gi) ∼ Normal distribution (1)

where p0 is the initial price, and gi is the i-th year growth rate. The last step follows

because the central limit theorem implies that the process of adding random values

leads to a normal distribution. Similarly, that explains why the log of wage is often less

skewed than wage. To sum up, the log transformation can reduce not only variance,

but also skewness.

4. Since log function is nonlinear, we can capture nonlinearity between y and x by taking

log. For instance, we may believe that as area rises the price will rise, but at decreasing

rate (similar to diminishing marginal utility). In other words, a nonlinear level-log

model may be more appropriate than the linear level-level model.
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> mean(rprice[area>2000&area<3000])-mean(rprice[area>1000&area<2000])

[1] 34016.91

> mean(rprice[area>3000&area<4000])-mean(rprice[area>2000&area<3000])

[1] 25552.21

Indeed we see that as area changes from the range of (1000, 2000) to (2000, 3000), the

average price increases by a bigger amount than area changes from (2000, 3000) to

(3000, 4000)

5. If we think y changes by a constant percentage rather than a constant amount, then

the log level model is suitable

log(y) = βx+ u⇒ β =
d log(y)

dx
= constant percent change

In short, log transformation can provide percent interpretation

6. Finally, keep mind that log transformation cannot be applied to negative values and

0!
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