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1. The error term in a regression represents unobserved factors. When the error term is

homoskedastic and uncorrelated with each other, OLS is best linear unbiased estimator

(BLUE) according to Gauss-Markov theorem.

2. This note is concerned with error term that shows heteroskedasticity or correlation with

each other. There are two implications—(i) OLS can still be consistent if exogeneity

holds, but we have to use robust standard error; (ii) Generalized Least Squares (GLS)

is BLUE, while OLS is not. Essentially GLS is OLS applied to a transformed regression

in which the error terms are homoskedastic and uncorrelated with each other.

Cochrane-Orcutt estimator

3. We examine the issue of correlated error term first. In cross sectional data, error term

can be correlated in the form of (1) spatial correlation—Ohio and Indiana may be

correlated because geographically they are neighbors; (2) cluster correlation—kids in

the same family are correlated because they share same parents. In time series data,

a variable can be correlated with its own past, called serial correlation. This section

focuses on serial correlation.

4. Consider a time series regression with error term u that follows a first-order autore-

gressive or AR(1) process

yt = β1xt + ut, ut = ρut−1 + et (1)

where we assume (i) exogeneity cov(xt, ut) = 0, and (ii) et is serially-uncorrelated and

homoskedastic. It is easy to show the error terms u are serially correlated

cov(ut, ut−1) 6= 0

In this case we can still use OLS as long as serial-correlation-robust-standard-error is

employed (consider coeftest function in lmtest package).

5. An alternative approach is to transform the regression so that Gauss-Markov theorem

becomes applicable again. Toward that end, replace ut with yt − β1xt in the AR(1)
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regression ut = ρut−1 + et. Algebra rearrangement leads to

(yt − ρyt−1) = β1(xt − ρxt−1) + et (2)

Notice that the new error term et is serially uncorrelated and homoskedastic. Thus,

OLS applied to the transformed regression above should produce BLUE result (called

Cochrane-Orcutt estimator).

6. Cochrane-Orcutt estimator is just one example of GLS estimator, which is OLS applied

to that transformed regression (2) in this case. The transformed variables yt − ρyt−1
and xt − ρxt−1 are called quasi-differenced data.

7. In reality, the autoregressive coefficient ρ is unknown. The feasible GLS (FGLS) esti-

mator entails a multiple-step procedure

• Step 1: estimate original regression (1) with OLS

• Step 2: save residual û and run AR(1) to obtain ρ̂

• Step 3: create quasi-difference yt− ρ̂yt−1 and xt− ρ̂xt−1, then run the transformed

regression (2) with OLS

• After we get better estimates of β, we can obtain better residuals, and better

estimate of ρ. In other words, Steps 2 an 3 may be iterated until the change in

estimates is close to zero (convergence)

8. We use simulated data as an illustration. By construction, the error term follows an

AR(1) process (e in the following codes are actually u in the math equations).

> set.seed(12345)

> n = 100; rho = 0.8; beta1=2.5

> e = rep(0,n)

> for (t in 2:n) {

+ e[t]=rho*e[t-1]+rnorm(1)

+ }

> x = rnorm(n)

> y = 1+ beta1*x + e

Simulation enables us to know the true values of β1 = 2.5 and ρ = 0.8.
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9. Before running regressions, we create a user-defined lag function

> lag = function(x) {

+ return(c(NA, x[1:length(x)-1]))

+ }

Notice that a missing value NA is included

10. The OLS estimate of original model and AR(1) regression are

> mols = lm(y~x)

> ehat = resid(mols)

> rho = coef(lm(ehat~lag(ehat)))[2]

> cat("OLS estimate of slope is",coef(mols)[2])

OLS estimate of slope is 2.76691

> cat("AR(1) estimate of rho is",rho)

AR(1) estimate of rho is 0.7067112

The two estimates 2.76691 and 0.7067112 are close to true values 2.5 and 0.8.

11. Next we obtain FGLS in an iterative fashion

> for (j in 1:4) {

+ cat("*********iteration",j,"*********","\n")

+ ys = y - rho*lag(y)

+ xs = x - rho*lag(x)

+ cat("GLS estimate of slope is",coef(lm(ys~xs))[2],"\n")

+ ehat = y - coef(lm(ys~xs))[1]-coef(lm(ys~xs))[2]*x

+ rho = coef(lm(ehat~lag(ehat)))[2]

+ cat("AR(1) estimate of rho is",rho,"\n")

+ }

*********iteration 1 *********

GLS estimate of slope is 2.583202

AR(1) estimate of rho is 0.7251058

*********iteration 2 *********

GLS estimate of slope is 2.581839

AR(1) estimate of rho is 0.7251657
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*********iteration 3 *********

GLS estimate of slope is 2.581835

AR(1) estimate of rho is 0.7251659

*********iteration 4 *********

GLS estimate of slope is 2.581835

AR(1) estimate of rho is 0.7251659

Those estimates 2.581835 and 0.7251659 are closer to true values 2.5 and 0.8 than OLS

estimates. Thus, FGLS outperforms OLS in this example. This finding is expected

because the error term is serially correlated.

12. By the way, cochrane.orcutt function in the orcutt package can obtain the same esti-

mates

> library(orcutt)

> cochrane.orcutt(mols, convergence = 8, max.iter=100)

Cochrane-orcutt estimation for first order autocorrelation

number of interaction: 4

rho 0.725166

Durbin-Watson statistic

(original): 0.58256 , p-value: 4.074e-13

(transformed): 1.92212 , p-value: 3.676e-01

coefficients:

(Intercept) x

2.251843 2.581835

The Durbin-Watson statistic implies that the original model (1) suffers serial correla-

tion in error term, while the transformed regression (2) does not (which is also why

GLS is better than OLS). Google “Durbin-Watson statistic” to learn more.

WLS

13. This section focuses on the issue of heteroskedasticity (varying variance) in error term.
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14. A popular time series model allowing for conditional heteroskedasticity is ARCH model.

For example, the simplest first-order ARCH model consists of three equations

yt = β1xt + et (3)

et =
√
htvt (4)

ht = a0 + a1e
2
t−1 (5)

where vt is white nose (but et is not).

15. We can show that the conditional variance of the error term is h, which is NOT constant

(i.e., heterskedasticity is present):

var(et|Ωt) = ht = a0 + a1e
2
t−1 6= constant (6)

where the information set Ωt includes lag values of observable variables. Later we call

(3) the mean regression; and (5) the variance regression.

16. If a1 is positive, then a large previous forecasting error et−1 will result in greater

volatility in the current period (measured by ht) than a small previous forecasting

error. This phenomenon is called volatility clustering. Read

https://www.fsb.miamioh.edu/lij14/672_engle.pdf

to learn more about ARCH model

17. Again we use simulated data so that we can compare estimation to truth

> set.seed(12345)

> n = 1000; a0 = 0.02; a1 = 0.7; beta1=-0.07

> e = rep(0,n)

> h = rep(0,n)

> h[1]=a0

> for (t in 2:n) {

+ h[t] = a0 + a1*e[t-1]^2

+ v = rnorm(1)

+ e[t]= sqrt(h[t])*v

+ }
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> x = rnorm(n)

> y = 1 + beta1*x+e

The still consistent but non-BLUE OLS estimation of mean regression (3) are

> mols = lm(y~x)

> cat("OLS estimate of slope is",coef(mols)[2])

OLS estimate of slope is -0.05732881

18. For the variance regression ht = a0 + a1e
2
t−1, we can apply garch function in the tseries

package

> ehat = resid(mols)

> library(tseries)

> co = coef(garch(ehat, order=c(0,1),trace=F))

> cat("ARCH(1) estimate is",co)

ARCH(1) estimate is 0.01970662 0.7332201

Note that the estimates -0.05732881, 0.01970662, and 0.7332201 are close to true values

-0.07, 0.02, and 0.7.

19. Similar to the Cochrane-Orcutt estimator, weighted least squares (WLS) is another

example of GLS. It is also OLS applied to a transformed regression. But here the

transformed regression is obtained by dividing both sides of model (3) by
√
ht

yt√
ht

= β1
yt√
ht

+ vt (7)

where we use the fact that et√
ht

= vt. If the original model has an intercept we need to

add β0
1√
ht

on the right hand side of (7). Notice that this transformed regression does

NOT include a constant term.

20. The new error term vt is serially uncorrelated and homoskedastic, so OLS applied to

the transformed regression above should produce BLUE result. By definition, WLS is

OLS applied to (7). Again, an iterative procedure may be employed to produce WLS

estimation
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> for (j in 1:4) {

+ cat("*********iteration",j,"*********","\n")

+ h = rep(0,n)

+ h[1] = co[1]

+ for (t in 2:n) {

+ h[t]=co[1]+co[2]*ehat[t-1]^2

+ }

+ ys = y/sqrt(h)

+ xs = x/sqrt(h)

+ cs = 1/sqrt(h)

+ cat("GLS estimate of slope is",coef(lm(ys~cs+xs-1))[2],"\n")

+ ehat = y - coef(lm(ys~cs+xs-1))[1]-coef(lm(ys~cs+xs-1))[2]*x

+ co = coef(garch(ehat, order=c(0,1),trace=F))

+ cat("ARCH(1) estimate is",co,"\n")

+ }

*********iteration 1 *********

GLS estimate of slope is -0.06613155

ARCH(1) estimate is 0.01886773 0.7643652

*********iteration 2 *********

GLS estimate of slope is -0.06683258

ARCH(1) estimate is 0.01882921 0.7659824

*********iteration 3 *********

GLS estimate of slope is -0.06688262

ARCH(1) estimate is 0.01882676 0.766087

*********iteration 4 *********

GLS estimate of slope is -0.06688619

ARCH(1) estimate is 0.01882659 0.7660944

Notice that

(a) h is unobservable in reality

(b) we estimate h using the variance regression

(c) we drop the constant term in the transformed regression

21. The estimation of mean regression in iteration 4 can also be obtained using lm function

with weight option
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> mwls=lm(y~x,weight=1/h)

> summary(mwls)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.005907 0.005668 177.48 <2e-16 ***

x -0.066886 0.005598 -11.95 <2e-16 ***

Multiple R-squared: 0.1251, Adjusted R-squared: 0.1243

22. By comparison, OLS estimation of the mean regression are below

> summary(mols)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.013063 0.007764 130.479 < 2e-16 ***

x -0.057329 0.007702 -7.443 2.12e-13 ***

Multiple R-squared: 0.05259, Adjusted R-squared: 0.05164

In this example, we see that (i) the WLS estimate of slope coefficient -0.066886 is closer

to the true value -0.07 than OLS estimate -0.057329; (ii) WLS standard error 0.005598

is less than OLS 0.007702; (iii) WLS R squared 0.1251 is greater than OLS 0.05259.

They all imply superiority of WLS over OLS.

MLE

23. Other than estimating the mean and variance regressions sequentially, we can estimate

them simultaneously with maximum likelihood estimation (MLE)

24. Toward that end, we assume vt follows a standard normal distribution, which implies

that the conditional distribution of y is a normal distribution with mean value β0+β1xt

and variance ht. Mathematically, we can write that distribution as

yt ∼ N(β0 + β1xt, ht), (ht = a0 + a1e
2
t−1) (8)

where the unknown parameters are β0, β1, a0, a1

25. MLE is based on a log-likelihood function. First, the likelihood function at period t is
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the probability density function of normal distribution

likelihoodt =
1√

2πht
e
− (yt−β0−β1xt)

2

2ht (9)

Then we take log to obtain log-likelihood

loglikelihoodt = −1

2
log ht −

(yt − β0 − β1xt)2

2ht
(10)

where we ignore the constant
√

2π. Finally, the log-likelihood for whole sample is

∑
t

loglikelihoodt =
∑
t

(
−1

2
log ht −

(yt − β0 − β1xt)2

2ht

)
(11)

26. In this case, we have to use numerical method to maximize the log likelihood since a

closed-form or analytical solution does not exist. R has an optim function that solves

optimization problem using numerical method.

27. The R codes of generating log-likelihood are below

> loglikf = function(co) {

+ a0 = co[1]

+ a1 = co[2]

+ b0 = co[3]

+ b1 = co[4]

+ n = length(y)

+ h = a0

+ logf = -0.5*log(h)-(y[1]-b0-b1*x[1])**2/(2*h)

+ e = y[1]-b0-b1*x[1]

+ for (i in 2:n) {

+ h = a0 + a1*e^2

+ logf = logf -0.5*log(h)-(y[i]-b0-b1*x[i])**2/(2*h)

+ e = y[i]-b0-b1*x[i]

+ }

+ return(-logf)

+ }
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28. Next we maximize the log-likelihood with optim function

> optim(co <- c(0.1,0.1,0.1,0.1), loglikf, hessian=TRUE)

$par

[1] 0.01855151 0.77693276 1.00211265 -0.07012560

$ convergence

[1] 0

The algorithm converges. The estimates -0.07012560, 0.01855151, and 0.77693276 are

close to true values -0.07, 0.02, and 0.7. An introduction to maximum likelihood

method is below

https://www.fsb.miamioh.edu/lij14/311r_or_ml.pdf
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